

iPL-3D: A Novel Bilevel Programming Model for Die-to-Die Placement

Shijian Chen^{2,1} Yihang Qiu^{4,2} Xueyan Zhao^{1,3,2} Jiangkao Li^{5,2} Biwei Xie^{1,2} Xingquan Li^{5,2} Yungang Bao^{1,3,2} Zhipeng Huang²

¹Institute of Computing Technology, CAS ²Peng Cheng Laboratory ³University of Chinese Academy of Sciences ⁴Guangdong University of Technology ⁵Minnan Normal University

Introduction

- 3D-ICs are expected to further improve chip performance after Moore's Law reaches its limits.
- The placement stage is more critical in 3D-IC flow than ever as it is a major contributor to further improvements in chip performance.
- Existing work is difficult to deal with the current complex process constraints and it is difficult to consider comprehensive objectives.

Problem Statement

The coordinate of the cell c_i is denoted by (x_i, y_i, z_i) , where $z_i \in \{0, 1\}$. And $e_i \in E$ is crossing net if and only if it has both top and bottom cells. We note the bottom part as e_i^- and the top as e_i^+ . In addition,

Bilevel Programming Model for D2D Placement

Important Observation

- There is a natural dominance relationship among decision variables. • Once z is determined, the remaining part is similar to the traditional 2D Placement problem.
- Traditional min-cut-based methods struggle to obtain a global view

Modeling

(1)

(2)

- The upper level variable corresponds to **z**.
- The lower level variable corresponds to $\mathbf{x}_l = (\mathbf{x}, \mathbf{y}, \mathbf{x}_t, \mathbf{y}_t)$.
- The objective function can be rewrite as: $F(\mathbf{z}, \mathbf{x}_l) = WL(\cdot) + \rho \varepsilon(\cdot)$

Tier Optimization

Detailed Tier Optimization

- Dynamic Row-based Data Structure: Implement the insertion and deletion of units at any position in a row.
- Simple 3D Detailed Placement: Quickly generate legal solutions and calculate actual gains.

 $T = \{t_1, t_2, ..., t_m\}$ represents the set of terminals used by crossing nets. (x_{t_i}, y_{t_i}) denotes the coordinate of terminal t_j . We use $WL_t(e_j, \cdot)$ and $WL(e_i, \cdot)$ to represent the wirelegath of net e_i in the 3D and 2D, respectively. Their relationship is defined as Eq. (1), and $\mathbf{x}_{e_i} = (\mathbf{x}, \mathbf{y}, x_{t_i}, y_{t_i})$.

 $\mathsf{WL}_t(e_j; \mathbf{x}, \mathbf{y}, \mathbf{z}, x_{t_j}, y_{t_j}) =$

 $\begin{cases} \mathsf{WL}(e_j^- \cup \{t_j\}; \mathbf{x}_{e_j}) + \mathsf{WL}(e_j^+ \cup \{t_j\}; \mathbf{x}_{e_j}) \ \varepsilon(e_j; \mathbf{z}) = 1; \\ \mathsf{WL}(e_j; \mathbf{x}, \mathbf{y}) \ \varepsilon(e_j; \mathbf{z}) = 0, \end{cases}$

where $\varepsilon(e; \mathbf{z}) = \max_{c_i \in e} (z_i) - \min_{c_i \in e} (z_i)$., and $\mathbb{I}(\cdot)$ is indicator function. Therefore, the original D2D placement problem can be formalized as the optimization problem shown in Eq. (2)

> $\min_{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{x}_t, \mathbf{y}_t} \sum_{e_j \in E} WL_t(e_j; \mathbf{x}, \mathbf{y}, \mathbf{z}, x_{t_j}, y_{t_j}) + \rho \varepsilon(e; \mathbf{z}),$ s.t. $D_b(\mathbf{x}, \mathbf{y}, \mathbf{x}_t, \mathbf{y}_t, \mathbf{z}) \le M_b, \ \forall b \in S_b,$ $\sum_{i=1}^{n} A_1(c_i) \mathbb{I}(z_i) \le u_t A,$ $\sum_{i=1}^{n} A_0(c_i) \mathbb{I}(1-z_i) \le u_b A,$ $\sum_{e_j \in E} \varepsilon(e_j; \mathbf{z}) \le N_t.$

Bilevel Programming

For the upper-level objective function $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and lower-level objective function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, the bilevel programming problem is given by

> $\min_{x_u \in X_U, x_l \in X_L} F(x_u, x_l)$ $x_l \in \arg\min\{f(x_u, x_l)|$ $x_l \in X_L$ s.t. $g_j(x_u, x_l) \le 0, j = 1, ..., J$

• The lower level problem can be defined as: $g(\mathbf{z}) = \min_{\mathbf{x}_l} \{ F(\mathbf{x}_l, \mathbf{z}) | D_b(\mathbf{x}_l, \mathbf{z}) \le M_b, \forall b \in S_b \}$ $\Psi(\mathbf{z}) = \arg\min\{F(\mathbf{x}_l, \mathbf{z}) \mid D_b(\mathbf{x}_l, \mathbf{z}) \le M_b, \forall b \in S_b\}$

• There is a tautology: $\forall \mathbf{x}_l^* \in \Psi(\mathbf{z}), g(\mathbf{z}) = F(\mathbf{x}_l^*, \mathbf{z})$. Then we use $g(\mathbf{z})$ replace the original objective function $F(\mathbf{x}_{l}^{*}, \mathbf{z})$. The original problem can be rewritten as Eq. 3.

$$\min_{\mathbf{z},\mathbf{x}_l} g(\mathbf{z})$$
s.t. $\mathbf{x}_l \in \Psi(\mathbf{z})$

$$\sum_{i=1}^n A_1(c_i) \mathbb{I}(z_i) \le u_t A$$

$$\sum_{i=1}^n A_0(c_i) \mathbb{I}(1-z_i) \le u_b A$$

$$\sum_{e_j \in E} \varepsilon(e_j; \mathbf{z}) \le N_t$$

Solve Tow Subproblems Alternately

- The variable \mathbf{x}_l does not appear in other constraints and objectives.
- To solve efficiently, we split the original problem and introduce a surrogate function.

$$\min_{\mathbf{z}} \hat{g}(\mathbf{x}_{l}^{k}, \mathbf{z})$$
s.t.
$$\sum_{\substack{i=1\\j \in E}}^{n} A_{1}(c_{i}) \mathbb{I}(z_{i}) \leq u_{t} A$$

$$\sum_{\substack{i=1\\j \in E}}^{n} A_{0}(c_{i}) \mathbb{I}(1-z_{i}) \leq u_{b} A$$

$$\sum_{e_{j} \in E} \varepsilon(e_{j}; \mathbf{z}) \leq N_{t}$$
(4)
$$\mathbf{x}_{l}^{k+1} = \Pr_{\Psi(\mathbf{z}^{k+1})} (\mathbf{x}_{l}^{k}) \quad (5)$$

Flattend Placement

• **Motivation**: A high-quality solution can also provide sufficient information for the surrogate function $\hat{g}(\mathbf{x}_l, \mathbf{z})$

Cluster 3 Cluster 8

Locations candidate locations

Figure 2. Example for Row-based Data-structure.

Figure 3. Example for Terminal Legalization.

Terminal Legalization

Problem Characteristics

(3)

(6a)

(6b)

- Cost calculation is independent. Terminals are of the same size. Solving
- **Bipartite Graph Matching**: Select k candidate positions around each terminal in its optimal region. Then, network simplex algorithm is performed to do bipartite graph matching between terminal and candidate locations.

• Lower Bound: $WL(x_{real}^*) \le WL(x_{arid}^*) + 2C \#$ terminal.

Experimental Results

- Compared to the top three competitors, there is an improvement in wirelength of 4.33%, 4.42%, and 5.88%, respectively. The speed is 1.84x faster than the first-place competitor.
- #Terminals used is the lowest, with improvements of 79.61%, 16.74%, and 15.76% compared to the top three competitors.
- The final result shows an increase in wirelength of 7.63% compared to Flatten GP (Theorem 1).

Table 1. Experimental Results on ICCAD 2022 Contest Benchmarks.

$G_k(x_u, x_l) \le 0, k = 1, \dots, K,$

where $G_k : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}, k = 1, ..., K$ denote the upper-level constraints, and $g_i: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ represent the lower-level constraints, respectively. Equality constraints may also exist that have been avoided for brevity.

Figure 1. Graphical representation for optimal value function $\phi(\cdot)$ when the lower subproblem was solved.

Overall Flow - iPL-3D

- **Method**: Place all standard cells in one layer and double the capacity of the bin. Then solve the global placement problem to obtain \mathbf{x}_{2D}
- **Theorem**: The quality of the optimal planar solution obtained from Flattened Placement is the upper bound for the final 3D solution.

 $WL(x_{2D}^*) \le WL(x_{2\rightarrow 3D}) \le WL(x_{3D}^*)$

Tier Optimization

Motivation

where

S.

• Consider MIV Density & Wirelength Partitioning: Changes in the vertical coordinates not only affect the number of terminals but also lead to additional wirelength changes caused by terminals.

Optimized from two perspectives of coarse-grained and fine-grained: Coarse-grained can provide a relatively good initial solution, while fine-grained can further refinement.

Global Tier Optimization

Best Improvement Algorithm: The gain is maintained using a priority queue, and the candidate cell with the largest gain is iteratively selected for tier changing.

• Parameterized Comprehensive Surrogate Function: When γ is sufficiently large, select the region with the highest density, and sort the remaining parts within the region based on their weights.

 $p(S \cup \{c_i\}) - p(S) = \Delta$ wirelenth + $\rho\Delta$ #Terminal

Case	Flattened	3th			2nd			1st			Ours		
	GP	HPWL	#Terminal	CPU(s) [†]									
case2	1758214	2097487	163	10	2080647	477	14	2072075	1131	45	1992499	461	45
case2_h	2111322	2644791	151	9	2735158	687	15	2555461	1083	40	2530195	658	53
case3	26474613	33063568	14788	145	30969011	11257	437	30580336	16820	635	30234112	9612	442
case3_h	24200040	28372567	11211	133	27756492	8953	482	27650329	16414	412	26939286	8203	479
case4	248129463	281378079	46468	925	274026687	51480	3284	281315669	84069	2580	267381744	43140	1078
case4_h	272085522	307399565	58860	983	308359159	59896	3283	301193374	84728	2239	289541474	51641	1144
N.Total	-7.63%	5.88%	15.76%	0.68	4.42%	16.74%	2.32	4.33%	79.61%	1.84	0.00%	0.00%	1.00

Table 2. Results With and Without Alternating Optimization

Table 3. Terminal Legalization Experimental Results.

Case	w/o. Alterna	ting Optim	ization.	w/ Alternating Optimization				
Case	HPWL	#Terminal	CPU(s)	HPWL	#Terminal	CPU(s)		
case2	2032655	555	20	1992499	461	45		
case2_h	2562890	793	19	2530195	658	53		
case3	30332531	10604	135	30234112	9612	442		
case3_h	26935732	9288	128	26939286	8203	479		
case4	270042122	54112	604	267381744	43140	1,078		
case4_h	294923683	63283	637	289541474	51641	1,144		
N.Total	1.33%	21.91%	0.48	0.00%	0.00%	1.00		

	1							
tion		Case	C	#Terminal	WL	CPU(s)	TOR	Rat
CPU(s)			200	1/1	1002400	1	1001705	
45		casez	200	461	1992499		1981/82	0.54
53		case2_h	228	658	2530195	1	2512837	0.69
442		case3	100	9612	30234112	7	30141038	0.31
479			00	0000	2/0000/		0/075050	
L,078		case3_n	92	8203	26939286	5	26875050	0.24
L,144		case4	124	43140	267381744	15	266850007	0.20
1.00		case4_h	132	51641	289541474	16	288659033	0.30

• Knapsack maximization like priority calculation:

Figure 4. Extra experiments of different terminal pitch (Case4).

[1] Kai-Shun Hu, I-Jye Lin, Yu-Hui Huang, Hao-Yu Chi, Yi-Hsuan Wu, and Chin-Fang Cindy Shen. 2022 ICCAD CAD contest problem B: 3D placement with D2D vertical connections. In Proceedings of *ICCAD*, pages 1–3. IEEE, 2022.

International Conference on Computer-Aided Design, San Francisco

