
iPL-3D: A Novel Bilevel Programming
Model for Die-to-Die Placement

Xueyan Zhao1,3,2, Shijian Chen2,1, Yihang Qiu4,2, Jiangkao Li5,2, Zhipeng Huang2,∗,
Biwei Xie1,2, Xingquan Li5,2, and Yungang Bao1,3,2

1State Key Laboratory of Processors, Institute of Computing Technology, CAS, Beijing, China
2Peng Cheng Laboratory, Shenzhen, China

3University of Chinese Academy of Sciences, Beijing, China
4School of Integrated Circuits, Guangdong University of Technology, Guangzhou, China
5School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, China

Email: zhaoxueyan21b@ict.ac.cn, ∗huangzhp@pcl.ac.cn, xiebiwei@ict.ac.cn, fzulxq@gmail.com, baoyg@ict.ac.cn

Abstract—Die-to-die (D2D) placement is a more chal-
lenging stage in achieving higher performance with complex
constraints, critically impacting timing, power, yield, cost,
etc. Existing placers often rely on indirect objectives (e.g.,
considering cut sizes in tier assignment), which can lead to
a loss of the overall solution space utilization and may even
deviate from the actual objective. To address this issue, this
paper leverages the natural dominance relationship between
decision variables to transform the original problem into
a bilevel programming problem equivalently. Additionally,
an alternating optimization framework is introduced to
enhance the exploration of the overall solution space. On
the one hand, we propose two tier optimization operators
for simultaneous optimization of wirelength and #terminal
in global and detailed perspectives; On the other hand,
we present a near-optimal terminal legalization algorithm
following an efficient multi-tier co-placement. Compared
with the top three winners of the ICCAD’22 contest, our
placer achieves 4.33%, 4.42%, and 5.88% smaller wire-
length, 79.61%, 16.74%, and 15.76% fewer #terminal and
competitive runtime. Moreover, our placer always uses the
fewest #terminal and achieves amazing wirelength reduction
when the terminal size changes.

I. INTRODUCTION

The quality of 3D IC flow is significantly influenced
by placement. In recent years, various 3D integration
methods (e.g., hybrid wafer-to-wafer (W2W) bonding and
monolithic 3D (M3D)) have been proposed to address the
capacity bottleneck in vertical interconnection. Compared
to traditional through-silicon vias (TSVs) technologies,
emerging technologies introduce new features for better
performance, yield, and cost [1]. However, three newly
introduced features have an important impact on 3D
placer:

• Heterogeneous Processes: Emerging technologies al-
low different tiers to use different processes.

• Higher Vertical Connection Capacity: Emerging
technologies use smaller “VIAs” for vertical con-
nections, which increase the capacity of vertical
connections.

• New Net Model: Pins in the same net are connected
together by “VIA” in each tier (Shown in Fig. 1).

The presence of heterogeneous processes poses a chal-
lenge for traditional analytical methods, such as those
proposed in [2]–[4]. This is mainly due to the assumption
that the density model is continuous in three dimensions,

∗Corresponding author.

Net N1

Net N2

Net N3

Top Die Bottom Die

Pin Terminal

Fig. 1: The wirelength of a net is equal to the sum of the
wirelength of the top and bottom parts.

which does not hold in the presence of heterogeneity.
Meanwhile, higher vertical connection capacity and a new
net model have made the bin-based partitioning method
challenging to obtain high-quality solutions, as exempli-
fied in works such as [5]–[7]. This method initially uses
a 2D placer (e.g., [8]–[10])to obtain a projected solution.
Next, the layout is divided into multiple regions, and the
cells within each region are partitioned into two tiers
using an area-balanced min-cut algorithm. However, this
method does not have a comprehensive objective, and it
cannot take full advantage of vertical interconnection. To
address this limitation and create a more comprehensive
objective, Lu et. al [11] utilize Graph Neural Networks
(GNNs) for unsupervised graph representation learning.
Upon completion of graph learning, area-balanced parti-
tioning based on the learned representation is used. While
this work is novel, it can be challenging to understand its
workings from an optimization perspective.

Besides, most previous works treated the tier assign-
ment and placement problem as two independent prob-
lems for flexibility. However, this approach limits the
solution space, as the solutions obtained when considering
each problem independently are merely subsets of the
overall solution space. We believe that the interplay
between the two phases can be used to observe the overall
solution space better. Specifically, tier assignment can
provide an initial solution for placement while placement
can provide an estimate of the comprehensive objective
for tier assignment. Therefore, in this paper, We propose
our D2D placer, which can address new features while
observing the overall solution space. Our main contribu-
tions are summarized as follows:

1

• We propose a novel modeling approach for the D2D
placement problem utilizing bilevel programming. By
leveraging the natural dominance relationship between
decision variables, our approach provides a comprehen-
sive observation of the overall solution space.

• We propose an efficient partitioning algorithm for the
D2D placement problem, which leverages the locality
of the placement problem while optimizing the wire-
length and #terminal from both global and detailed
perspectives.

• We propose an effective and efficient MIV legalization
method, which is near optimal in wirelength.

• We propose an alternating optimization framework for
bilevel programming and integrate all the above tech-
niques to solve the D2D placement problem. Compared
with the top three in ICCAD’22 contest [1], our placer
achieves 4.33%, 4.42%, and 5.88% smaller wirelength,
79.61%, 16.74%, 15.76% less #Terminal, 1.84x, 2.32x,
0.68x speedup in runtime. Moreover, even without
the alternating iteration, our algorithm achieves a 3%
wirelength improvement and is 3.8x, 4.8x, and 1.4x
faster than the top three, respectively.
The remainder of this paper is organized as follows.

Section II describes the preliminaries; Section III models
the D2D placement problem into a bilevel programming
problem; Section IV explains the detail of our framework;
Section V demonstrates the results; Section VI concludes
the paper.

II. PRELIMINARIES

A. Problem Statement

This paper considers the 3D placement problem, in-
cluding multi-die netlist partitioning and placement with
D2D vertical connections presented in the ICCAD’22
CAD Contest [1]. The objective is to assign cells to
appropriate dies, creating “connector” (e.g., hybrid bond-
ing terminals) that connects the top and bottom dies of
the crossing net, and minimizing the total half-perimeter
wirelength (HPWL) shown in Fig. 1. And the constraints
that should be satisfied are listed below:
• Technology constraint: The top and bottom dies may

use the same or different technologies with the same
logical library. Different technologies are associated
with different cell sizes, heights, and pin locations. In
addition, all cells are single-row height.

• Maximum utilization constraint: Each die has the same
area A but a different maximum utilization. The max-
imum utilization of the top (bottom) die is denoted by
ut (ub).

• Terminal constraint: If cells in the same net are assigned
to different dies, we should add one hybrid bonding
terminal. All terminals have the same size and must
satisfy the spacing constraint C. The maximum number
of terminals is Nt.

• Legalization constraint: All cells need to be placed on
the row and do not overlap.

B. Bilevel Programming

Bilevel programming problem consists of two levels
of optimization tasks where one optimization task is

F(𝑥𝑥𝑢𝑢, 𝑥𝑥𝑙𝑙)

𝑥𝑥𝑙𝑙

Fig. 2: Graphical representation for bilevel programming
optimal value function ϕ(·) when the lower subproblem
was solved.

nested within the other [12]. The upper and lower level
problems are referred to as the leader and follower
problems, respectively. Each level has its own objec-
tive, constraints, and decision variables. The lower-level
optimization problem is a constraint to the upper-level
optimization problem, so only those members considered
feasible are lower-level optimal and satisfy the upper-level
constraints. Above all, the general definition of bilevel
programming is shown in Definition 1 and an example of
the optimal value function is shown in Fig. 2.

Definition 1 (Bilevel Programming). For the upper-level
objective function F : Rn × Rm → R and lower-
level objective function f : Rn × Rm → R, the bilevel
programming problem is given by

min
xu∈XU ,xl∈XL

F (xu, xl)

s.t.
xl ∈ argmin

xl∈XL

{f(xu, xl)|

gj(xu, xl) ≤ 0, j = 1, ..., J}
Gk(xu, xl) ≤ 0, k = 1, ...,K,

where Gk : Rn×Rm → R, k = 1, ...,K denote the upper-
level constraints, and gj : Rn × Rm → R represent the
lower-level constraints, respectively. Equality constraints
may also exist that have been avoided for brevity. In the
definition, the sets XU ⊂ Rn and XL ⊂ Rm may denote
additional restrictions like integrality. It is common to as-
sume these to be sets of reals unless mentioned otherwise.

III. MODELING FOR DIE-TO-DIE PLACEMENT

A. Original Die-to-Die Placement

We introduce some notations to formulate the D2D
placement problem more clearly. H = (V,E) denotes
the cells and nets among cells, where the cells and nets
are denoted by a set of vertices V = {c1, c2, ..., cn} and a
set of hyperedges E = {e1, e2, ..., em}, respectively. The
coordinate of the cell ci is denoted by (xi, yi, zi), where
zi ∈ {0, 1}. And ej ∈ E is crossing net if and only if it
has both top and bottom cells. We note the bottom part
as e−j and the top as e+j . In addition, T = {t1, t2, ..., tm}
represents the set of terminals used by crossing nets.
(xtj , ytj) denotes the coordinate of terminal tj . We use
WLt(ej , ·) and WL(ej , ·) to represent the wirelegnth of

net ej in the 3D and 2D, respectively. Their relationship
is defined as Eq. (1), and xej = (x,y, xtj , ytj).

WLt(ej ;x,y, z, xtj , ytj) ={
WL(e−j ∪ {tj}; xej) + WL(e+j ∪ {tj}; xej) ε(ej ; z) = 1;

WL(ej ; x, y) ε(ej ; z) = 0,
(1)

where ε(e; z) is defined as Eq. (2), and I(·) is indicator
function.

ε(e; z) = max
ci∈e

(zi)−min
ci∈e

(zi). (2)

Therefore, the original D2D placement problem can be
formalized as the optimization problem shown in Eq. (3),
where Db(·) represents the density of bin b and Mb is the
threshold density of bin b. Sb is the collection of all bins
in the top, bottom, and terminal tiers. A1(ci) and A0(ci)
represent the top and bottom area of cell ci. Additionally,
ρ is the cost of a terminal.

min
x,y,z,xt,yt

∑
ej∈E

WLt(ej ;x,y, z, xtj , ytj) + ρε(e; z),

s.t. Db(x, y, xt, yt, z) ≤Mb, ∀b ∈ Sb,∑n
i=1 A1(ci)I(zi) ≤ utA,∑n
i=1 A0(ci)I(1− zi) ≤ ubA,∑
ej∈E ε(ej ; z) ≤ Nt.

(3)

B. Bilevel Programming for 3D-Placement

It is challenging to solve the original problem directly
because of its nonlinear objective and integer variables.
The existing partition-based algorithms are easy to solve
but lose the overall view of the solution space. Therefore,
a modeling way that is easy to solve and retains the over-
all view of the solution space is necessary. By analyzing
the original optimization problem, WLt(·) is the key to
why it is difficult to calculate analytically. Fortunately,
once the vertical coordinates z are determined, the func-
tion becomes computable. Then the rest subproblem is
similar to the traditional placement. Therefore, there is
a natural dominance relationship between decision vari-
ables, and the relationship corresponds to the definition
of bilevel programming. The lower level variable can be
defined as xl = (x,y,xt,yt), and the upper is z. Then,
the objective function can be rewritten as:

F (xl, z) =
∑
ej∈E

WLt(ej ;xl, z) + ρε(e; z). (4)

The lower level optimization problem can be defined as
Eq. (5a).

Ψ(z) = argmin
xl

{F (xl, z)| Db(xl, z) ≤Mb,∀b ∈ Sb}

(5a)
g(z) = min

xl

{F (xl, z)| Db(xl, z) ≤Mb,∀b ∈ Sb} (5b)

Furthermore, there is a tautology that relates the two
equations in Eq. (5b), that is ∀xl ∈ Ψ(z), F (xl, z) =
g(z). Using this proposition, we can transform the origi-
nal form of bilevel programming into Eq. (6).

min
z,xl

g(z)

s.t. xl ∈ Ψ(z)∑n
i=1 A1(ci)I(zi) ≤ utA∑n
i=1 A0(ci)I(1− zi) ≤ ubA∑
ej∈E ε(ej ; z) ≤ Nt

(6)

Evaluating g(z) is extremely time-consuming. There-
fore, we construct a surrogate function ĝ(xk

l , z) for
evaluating efficiently. The surrogate function takes two
arguments. The first one is xl, which is a good enough
solution for g(z) in our assumption. The second is vertical
coordinates z. In addition, as shown in Eq. (6), the
constraints and objective function are splittable because
xl has no effect on both the objective and other con-
straints. Therefore, we split the original problem into
two Subproblems 1, 2 and replace the first subproblem’s
objective function with ĝ(xk

l , z). Finally, we propose
an alternate optimization Algorithm 1, which solves the
bilevel programming by solving the two subproblems
alternately.

Subproblem 1.

min
z

ĝ(xk
l , z)

s.t.
∑n

i=1 A1(ci)I(zi) ≤ utA∑n
i=1 A0(ci)I(1− zi) ≤ ubA∑
ej∈E ε(ej ; z) ≤ Nt

(7)

Subproblem 2.

xk+1
l = Proj

Ψ(zk+1)

(xk
l) (8)

Algorithm 1 Alternate Optimization Algorithm

Input: Max iteration M ;
Output: Result xl,z;

1: k ← 0
2: x0

l ← Initial solution
3: while k ≤M do
4: zk+1 ← solution of Eq. (7)
5: xk+1

l ← ProjΨ(zk+1)(x
k
l)

6: k ← k + 1
7: end while
8: return xk

l , z
k

In Algorithm 1, the initial solution mentioned in line
2 corresponds to the flattened placement introduced by
Section IV-A. Subproblem 1 is solved in line 4, and the
key that affects the quality is the setting of the surrogate
function ĝ(xl, z). In this paper, we propose two kinds
of surrogate functions. Using these surrogate functions,
two tier optimization operators were proposed to optimize
Subproblem 1 in global and detailed view, respectively.
Subproblem 2 is defined as a projection operator, which
corresponds to our planar solution correcting. The basic
idea is to find a high-quality solution as close as possible
to the existing planar solution.

IV. OUR FRAMEWORK

Fig. 3 shows the overall flow of our proposed placer,
in which SP-1 and SP-2 correspond to the Subproblems 1

Planar Solution Correcting

Global Tier Optimization

Terminal Legalization

Converge?
Yes

No

Detailed Tier Optimization

Flattened Placement

3D Detailed Placement

LG & DP Output

ConstraintsNetlist Technology

SP-1

SP-2

Bilivel Programming

Multi-Tier Placement

Fig. 3: Our bilevel programming placement framework.

and 2. In this section, we will explain the details of our
framework.

A. Flattened Placement for Initial Solution

To obtain a surrogate function ĝ(xl, z) that is as close
as possible to the original function g(z), the quality of xl

solution is critical. Obviously, there is a conclusion shown
in Theorem 1. This theorem demonstrates the possibility
that the quality of the solution obtained from the flat-
tened global placement is good enough. Therefore, our
framework uses the flattened global placement solution
as the initial solution. Particularly, we perform flattened
global placement according to the information of the
given technology libraries.

Theorem 1. If technology libraries in the top and bottom
die are the same, the global placement solution obtained
by assigning all cells into one die and doubling the
threshold of bin density is a lower bound of the die-to-die
placement problem, and the optimal value is between this
lower bound and the value of the final legal solution.

B. Global Tiers Optimization

1) Fast Terminal Legalization: In Subproblem 1, if the
vertical coordinates of the standard cells are modified,
not only the number of terminals will change, but also
the extra wirelength introduced by terminals will be
affected. Therefore, it is necessary to quickly evaluate the
changes of extra wirelength while modifying the vertical
coordinates of cells. For the determination of terminal
coordinates, we first introduce the Definition 2. This def-
inition inspired us to limit the maximum distance between
the legal location of the terminal and the optimal region.
In this way, the extra wirelength can be within a certain
range, and there is an opportunity to do incremental
terminal legalization (using BFS in our method).

Definition 2 (Terminal Optimal Region). The optimal
region of terminal tj is defined as the position such that
the extra wirelength introduced by terminals is minimized.
It can be formulated as Eq. (9).

min
xtj

,ytj

HPWL(e−j ∪ {tj};xej) + HPWL(e+j ∪ {tj};xej)

(9)

From Die

Target Die

Fig. 4: Example for tier optimization.

This form is the same as the optimal region proposed
by [13], that is, the bounding boxes’ midpoint of the net
e−j and net e+j is the optimal solution.

2) Best Improvement for Tier Optimization: Solving
Subproblem 1 is still difficult for analytical methods,
while it is acceptable for classical iterative improvement
methods because most parts can be evaluated incremen-
tally (e.g., terminals’ legal locations). For the iterative
improvement algorithm, it is still necessary to restrict
the state space for efficiency. Above all, we transform
Subproblem 1 into another Subproblem 3.

Subproblem 3 (Tier Optimization). There are cell set Sf

in the from die and St in the target die, where f, t ∈ {0, 1}
and f ̸= t. For a cell set S ⊆ Sf , we say S is feasible if
and only if At(St ∪ S) ≤ B, where B is a constant. The
knapsack constraint can be written as I = {S|At(S) ≤
B − At(St)}. The goal is to find the ordered cell set
S = {c1, c2, ..., cj} ⊆ I whose vertical coordinates need
to be modified to minimize surrogate function ĝ.

Definition 3 (Neighborhood in Tier Optimization). We
use N (S) to represent the cell set with a neighborhood
relationship to S. If a cell set S′ ∈ N (S), there is a cell
c ∈ Sf\S and c = S′\S.

Definition 4 (Accept Function in Tier Optimization). We
define the accept function as ac(S, c) : I × Sf → {0, 1},
where returns 1 if and only if the terminals newly in-
troduced have available locations after changing vertical
coordinate of cell c and S ∪ {c} ⊆ I.

As described in Subproblem 3, we relax the two linear
constraints in the original Subproblem 1 into a knapsack
constraint by restricting the direction of moving as shown
in Fig. 4, where the size of a region is defined as τ times
the bin size. Besides, the subproblem is also defined as a
search problem. We use Definitions 3 and 4 to describe its
neighborhood and accept function, respectively. To solve
this subproblem, we use an algorithm shown in Algorithm
2.

The best improvement is an important idea used in the
traditional partition algorithm [14], [15]. However, the
critical heuristics in the algorithm are strongly related to
the specific problem definition. Two ideas are essential in
our algorithm. On the one hand, we maintain a priority
queue Q shown in line 1. The priority function p(S)
is defined as a set function, which is used to evaluate
the benefit when the cells contained in the set S are

Algorithm 2 Global Tier Optimization

Input: f, t, Sf , St, B;
Output: S;

1: Maintain a priority queue Q where elements in Sf

are sorted in increasing order by their keys, and the
key of ci is initialized to p(S∪{ci})−p(S)

At(ci)
.

2: S ← ∅, ci, bi ← Q.front()
3: while ac(S, ci) and bi ≥ 0 and At(St ∪ S) ≤ B do
4: Sf ← Sf\{ci}, S ← S ∪ {ci}
5: FastTerminalLegalization(ci,f).
6: Update the element’s priority by region and nets.
7: ci, bi ← Q.front()
8: end while
9: return S

moved from the bottom (top) die to the top (bottom)
die. In detail, p(S) = {ĝ(xS

l , z
S)|∀ci ∈ St ∪ S, zi =

t∧∀cj ∈ Sf\S, zj = f∧(xtk , ytk) ∈ T (S)}, where T (S)
is the terminal coordinates set determined in the process
of obtaining S. In particular, this priority represents the
benefit per unit area, which is a vital technique for solving
the maximization problem with the knapsack constraint.
On the other hand, when the vertical coordinate of a cell
is changed, only the cells in the same net or the same
region need to be reevaluated. This is the key to reducing
the times of evaluations and it can be parallelized. As for
the runtime, the largest part is the updating of the queue
Q, which is quite fast after parallelization.

p(S ∪ {ci})− p(S) = ∆wirelenth + ρ∆#Terminal

+ α
(
d(S ∪ {ci})− d(S)

)
+ β

(
o(S ∪ {ci})− o(S)

)
− γd(S),

(10a)

where

d(S) =
∑

region r

max(
Ar −Mr

hr
, 0),

o(S) =

n∑
i=1

∑
cj∈{cj |∀cj∈V,zj=zi}

Overlap(cj , ci)
hci

(10b)

3) Hyperparameterized Surrogate Functions: The pri-
ority calculation shown in Algorithm 2 is the most critical
part of the algorithm because it needs to balance the
objective and constraints. This priority is defined as the
difference of the objective function, which implies the
idea of the discrete gradient. We use the formula shown
as Eq. (10a) to give a general difference form of the
priority function p(S ∪ {ci})− p(S), where α, β, and γ
are hyperparameters, hr, Ar, Mr represent region r’s row
height, the total area of region cells, maximum available
area, respectively. hci is the row height of the die that
cell ci belonging.

In this formula, we analyze several factors that may
have an impact on the results, including (a) the total
wirelength and #terminal. Particularly, the total wirelength
includes the extra wirelength introduced by terminals. (b)
the overflow of regions, and (c) the overlap between cells.
Furthermore, this priority function reveals the principle
that when γ is large enough, the region with the largest

overflow is selected, then the region interior is sorted by
the rest of the weight.

4) Other Techniques for Global Tier Optimization: To
capture the global view as much as possible, some other
techniques have been applied to global tier optimization:

• Additional Density Penalty: As mentioned in [16],
the density weight has an essential impact on the
solution. We use additional density penalties to cope
with high-density scenarios.

• Variable Neighborhood Search: Variable neighbor-
hood search (VNS) is a common technique in local
search to avoid falling into local optimal prematurely.
In our approach, we alternate neighborhoods several
times in the hope of obtaining a better solution.

C. Detailed Tier Optimization

1) Dynamic Row-based Data Structure: Similar to the
detailed placement in the traditional placement, further
optimization is still necessary after global Tier opti-
mization in our framework. However, the coarse-grained
surrogate function (10a) is difficult to accurately represent
the exact objective function, which may do harmful
optimizations. Therefore, we propose a new data structure
to help calculate the exact objective function (wirelength
and #terminal). This data structure is inspired by the
classical legalization algorithm Abacus [17]. However,
the data structure in Abacus only allows cells to be
inserted sequentially at the end of rows. We extended this
mechanism to allow cells to be inserted anywhere in the
row.

Inst
5

Inst
3

Inst
8

Inst
7

Insert 6

Delete 7
Inst

5
Inst

3
Inst

8

Cluster 3 Cluster 7

Inst
5

Inst
3

Inst
7

Inst
8

Inst
6

Cluster 3

Cluster 3 Cluster 8

Fig. 5: An example for dynamic row-based datastructure.

Specifically, we maintain a partial order for all clusters
in the same row according to their priority, which is
defined as the horizontal center coordinate of the first
standard cell in the cluster. Fig. 5 shows an example of
inserting or deleting cells when using a dynamic row-
based data structure.

2) First Improvement for Tier Optimization: Next, we
will introduce our detailed tier optimization algorithm. It
also restricts the direction of moving and is implemented
as a first improvement algorithm. Specifically, we first
sort all the cells according to the priority mentioned in
Section IV-B2. Then, only top δ cells are evaluated and
considered for changing vertical coordinates.

Therefore, evaluating the benefit of modifying cells’
vertical coordinates is the most critical part of the detailed
tier optimization algorithm. The specific operation is
implemented as follows: a) Select an appropriate row in
the target die for the cell ci that needs to be modified
vertical coordinate. Two modes serve different purposes:

FIX and MOVE. When the FIX mode is used, a row is
selected according to the original horizontal coordinate
of ci. In contrast, when MOVE mode is used, the optimal
region of cell ci on the target die is computed first, and a
row is selected using the center coordinate of the optimal
region. b) Insert cell ci into the selected row and quickly
legalize it by using row-based data structures. c) Collect
all cells affected by the collapse operation and calculate
the benefits.

It is important to note that this process does not change
the horizontal position of all cells but only maintains a
new legal solution for calculating the fine-grained benefit.
As for the runtime, it is necessary to limit the number of
invoking.

D. Planar Solution Correcting

After tier optimization, the overflow in each region is
mostly eliminated, and the approximate locations of the
terminals are determined. The region size is still larger
than the bin size in plane placement, which may lead to an
inaccurate estimation of the surrogate function. Therefore,
to make the surrogate function as accurate as possible, we
need to correct the solution. For performance and stability
reasons, we alternately fix the coordinates of cells on one
die and place cells on the other die using a 2D placement
algorithm [9].

E. Terminal Legalization

After placing all cells, the locations of terminals need to
be determined. The terminal legalization problem can be
formulated as an optimization problem shown in Eq. (11).

min
xt,yt

m∑
j=1

WL(e−j ∪ {tj}; xej) + WL(e+j ∪ {tj}; xej)

s.t. min(|xti − xtj |, |yti − ytj |) ≥ C,

∀i, j = 1, 2, ...,m.
(11)

Especially, there is no mutual influence in the objective
function between the different terminals. In other words,
the objective function can be computed separately. Be-
sides, all terminals are the same size. Thanks to both of
these factors, if we restrict the coordinates of all terminals
to integer multiples of the spacing constraint C, we can
obtain an optimal solution using weighted bipartite graph
matching. Specifically, we divide the layout into uniform
square grids with length C. Then, we select k candidate
grids around its terminal optimal region (TOR) for each
terminal. The cost of a candidate grid is the Manhattan
distance to its TOR. Therefore, one part of the bipartite
graph is the candidate grids and the other part is defined
as terminals. The example in Fig. 6 illustrates the bipartite
graph we have described.

After obtaining a grid solution, we lift the restriction of
the grid and perform a refinement. Specifically, we first
sort the terminals by distance to their TOR. Then, each
terminal moves in four directions and uses binary search
to calculate the maximum distance it can move. We use
the r-tree data structure to quickly determine the legality
of the new location.

0

2.12 1.5

1.5 0

1.5 1.5

0 0

1.5 0

2.12 1.5

0

1.5 1.5

2.12

1.5

1.5

2.12

TOR

Candidate
Locations

TerminalsCost of single terminal’s
candidate locations

Fig. 6: Bipartite graph and cost example for terminal
legalization.

To further analyze the quality of the algorithm we
introduce Theorem 2. This theorem gives a lower bound
for the solution obtained by restricting the coordinates. In
practice, the wirelength difference between our solution
and the optimal solution is usually less than 0.5%.

Theorem 2. The difference between the optimal value
of Eq. (11) and the grid optimal value mentioned above
is less than twice the product of #terminal and C.

Proof. We denote the optimal solution of Eq. (11) as
(x∗

t ,y
∗
t). Then, we sort all the terminals in ascending

abscissa order, giving x∗
ti + C ≤ x∗

tj , iff i < j ∧
|y∗ti − y∗tj | < C. To obtain a feasible grid solution, we
use x′

ti = ⌊xti/C⌋ × C to denote the new coordinates
for each terminal. Obviously, x′

ti + C ≤ x′
tj still holds

in the previous condition. Similarly, the same is true if
x′
ti = ⌈xti/C⌉ × C. Therefore, We can establish the

relationship between feasible grid solution and optimal
solution, as described in Eq. (12). Further, the objective
of Eq. (11) is the same as the problem that finding the
optimal region for two nets. The absolute value of the
slope of this objective function is less than 2. Therefore,
the difference in the x direction is less than mC and the
total is less than 2mC.

m∑
j=1

|x′
tj − x∗

tj | = min(

m∑
j=1

x∗
tj mod C,

m∑
j=1

(C − x∗
tj mod C)) ≤ mC

2

(12)

Next, we try to analyze the complexity. The bipartite
graph includes (k+1)m vertices and km edges at most.
To solve the weighted bipartite graph matching problem,
we transform it into a minimum cost maximum flow
problem. Compared with the traditional high complex-
ity dinic algorithm, we use the network simplex (NS)
algorithm as the solver. The NS algorithm is a graph
theoretic specialization of the simplex algorithm. We use
the implementation in Lemmon [18]. It typically expects
O(V E), but at worst it can be worse. In practice, it’s ultra
fast.

F. Multi-Tier Placement

After determining all cells’ vertical coordinates, we
performed refinement on the horizontal coordinates of

TABLE I
EXPERIMENTAL RESULTS ON ICCAD 2022 CONTEST BENCHMARKS.

Case
Flattened 3th 2nd 1st Ours

GP HPWL #Terminal CPU(s) HPWL #Terminal CPU(s) HPWL #Terminal CPU(s) HPWL #Terminal CPU(s)†

case2 1758214 2097487 163 10 2080647 477 14 2072075 1131 45 1992499 461 45

case2 hidden 2111322 2644791 151 9 2735158 687 15 2555461 1083 40 2530195 658 53

case3 26474613 33063568 14788 145 30969011 11257 437 30580336 16820 635 30234112 9612 442

case3 hidden 24200040 28372567 11211 133 27756492 8953 482 27650329 16414 412 26939286 8203 479

case4 248129463 281378079 46468 925 274026687 51480 3284 281315669 84069 2580 267381744 43140 1078

case4 hidden 272085522 307399565 58860 983 308359159 59896 3283 301193374 84728 2239 289541474 51641 1144

N.Total -7.63% 5.88% 15.76% 0.68 4.42% 16.74% 2.32 4.33% 79.61% 1.84 0.00% 0.00% 1.00
† The result of the top 3 winners is provided by the contest organizer with Intel(R) Xeon(R) CPU E7-4820@2.00 GHz, 128GB memory, and 8

threads. For fair comparisons, our runtime is scaled to reflect machine difference: CPU = runtime in our machine × TOP-3’s reported runtime
TOP-3’s runtime in our machine .

components (including cells and terminals). Specifically,
we extend the method in [19] to adapt to our problem.
Specifically, we use the multi-field model to handle den-
sity constraints in different tiers separately.

G. Legalization and Detailed Placement

After all the cells’ vertical and horizontal coordinates
have been determined, we first call the existing 2D legal-
izer and detailed placer [10]. Then we use the row-based
data structure mentioned in Section IV-B4 to complete
the 3D detailed placement. This algorithm can realize the
transformation from one legal solution to another legal
solution. Therefore, it can be used at the end of the
framework to further optimize the objective.

V. EXPERIMENTAL RESULTS

In this section, we describe a set of comprehensive ex-
periments on the benchmarks provided by the ICCAD’22
CAD Contest [1]. Summary statistics of the benchmarks
are presented in Table II, in which the problem sizes range
from 2k to 220k. The number of cells, nets, bottom(top)
maximum utilization, and the maximum number of ter-
minals are denoted by “#Cells”, “#Nets”, “ub(ut)”, and
“#Max terminals”, respectively. In addition, “Diff tech”
indicates whether the top and bottom die used the same
technology.

TABLE II
BENCHMARK STATISTICS OF ICCAD’22 CAD

CONTEST.

Case #Cells #Nets #Pins #Max terminals ut(%) ub(%) Diff tech

case2 2,735 2,644 8,118 2,000 70 75 Yes

case2 hidden 2,735 2,644 8,118 2,000 79 79 No

case3 44,764 44,360 142,246 36,481 78 78 No

case3 hidden 44,764 44,360 142,246 36,100 68 78 Yes

case4 220,845 220,071 773,551 183,612 66 70 Yes

case4 hidden 220,845 220,071 773,551 178,929 66 76 Yes

A. Experimental Setup

Our placer is implemented in C++ and all experiments
were performed on the same platform with a 64-bit Linux
machine using Intel Xeon Platinum 8380 CPU 2.30GHz
and 960 GB memory. In addition, we used 8 threads for
a fair comparison with the top 3 winners in ICCAD’22
CAD Contest [1]. In addition, some necessary parameters
for our placer are also given in Table. III.

TABLE III
PARAMETERS OF OUR PLACER.

Parameter Description (default setting)
ρ Terminal cost. (ρ = 500)
α Overflow in region cost. (α = 100)
β Overlap cost. (β = 0.5)
γ Additional overflow penalty. (γ = 0 or 10000)
τ Times of a region over a bin. (τ = 7)
δ Candidate locations for a terminal. (δ = 25)
B Maximum moving area. (B = 1.1utA)
M Alternate optimization iteration. (M = 4)

B. Validation on Contest Benchmarks

The proposed method was applied to benchmarks from
the ICCAD’22 CAD contest suite [1], and the cumulative
HPWL post-detailed placement was measured. In the
original contest, the evaluation score was calculated by
summing the total HPWL of the top and bottom dies.
However, the number of terminals is also an important
consideration in the actual D2D placement problem.
Therefore, we further use HPWL, the number of ter-
minals, and runtime to evaluate the effectiveness of our
method. Table I presents the comparison results between
our algorithm and the top three winners. In the table,
“HPWL” represents the total wirelength, “#Terminal”
represents the number of terminals, “CPU” represents
the runtime in seconds, and “N.Total” represents the
normalized improvement of the corresponding metric.
The best result for each case is highlighted in bold.

As shown in Table I, our algorithm has achieved the
best results in all released benchmarks. Compared to the
top 3 winners, our algorithm demonstrates 4.33%, 4.42%,
and 5.88% wirelength improvements; 79.61%, 16.74%,
and 15.76% less #Terminal; 1.84x, 2.32x, and 0.68x
speedup. To further illustrate the effectiveness of our
algorithm, we take the result of Theorem 1 as the lower
bound and calculate the gap between our algorithm and
the lower bound. Although the flattened global placement
still has overlaps and does not consider the effect of
terminals on the increasing of wirelength, our placer can
obtain only 7.63% on total increasing wirelength than the
flattened global placement. This indicates that our method
is close to the optimal solution depending on the chosen
global placement algorithm.

Further, We use the overall runtime fraction instead of
the time complexity analysis to illustrate the efficiency.
Fig. 7 illustrates the runtime breakdown of each module
of our placer in case4. It can be found that the time

of each component is relatively balanced, indicating the
effectiveness of the method.

5%

27%

19%19%

4%
11%

15%
Flattened Placement
Global Tier Optimization
Detailed Tier Optimization
Planar Solution Correcting
Terminal Legalization
Multi-Tier Placement
LG & DP

Fig. 7: Speed breakdown in Case4.

C. Ablation Studies

After conducting our experiments, we performed ab-
lation studies to further evaluate the effectiveness of
different components in our approach. We investigated the
results with and without alternating optimization iteration
as shown in Table IV. First, we analyzed the perfor-
mance without alternating optimization to evaluate how
effective our bilevel programming method can understand
the overall solution space. The result without alternating
optimization achieved a 3% improvement in wirelength
over the top three competitors and outperformed all other
results in runtime, using only a small number of additional
terminals. When using alternating optimization, it inten-
sified the exploration of the solution space. Therefore,
The result with alternating optimization shows state-of-
the-art in both wirelength and #terminal. Overall, these
experimental results fully demonstrate the effectiveness
and efficiency of our proposed algorithm.

TABLE IV
RESULTS WITH AND WITHOUT ALTERNATING

OPTIMIZATION

Case
w/o. Alternating Optimization. w/ Alternating Optimization

HPWL #Terminal CPU(s) HPWL #Terminal CPU(s)

case2 2032655 555 20 1992499 461 45

case2 hidden 2562890 793 19 2530195 658 53

case3 30332531 10604 135 30234112 9612 442

case3 hidden 26935732 9288 128 26939286 8203 479

case4 270042122 54112 604 267381744 43140 1,078

case4 hidden 294923683 63283 637 289541474 51641 1,144

N.Total 1.33% 21.91% 0.48 0.00% 0.00% 1.00

D. Validation For Terminal legalization

We conducted an extra experiment to showcase the
effectiveness of our terminal legalization algorithm. The
results are presented in Table V. T.Width, #Terminal, and
WL correspond to the spacing constraint C, the number of
terminals, and the final HPWL, respectively. Additionally,
TOR represents the wirelength obtained when placing all
terminals in the terminal optimal region, which is not
legal and hence can only serve as an upper bound for
evaluation. The “Ratio” represents the difference between
the final wirelength and this upper bound. As depicted in
the table, we observed that this gap is quite small, which
suggests that our results are near-optimal.

TABLE V
TERMINAL LEGALIZATION EXPERIMENTAL RESULTS.

Case C #Terminal WL CPU(s) TOR Ratio

case2 200 461 1992499 1 1981785 0.54%

case2 hidden 228 658 2530195 1 2512837 0.69%

case3 100 9612 30234112 7 30141038 0.31%

case3 hidden 92 8203 26939286 5 26875050 0.24%

case4 124 43140 267381744 15 266850007 0.20%

case4 hidden 132 51641 289541474 16 288659033 0.30%

E. Validation on Scalability

In 3D chip design, the size and spacing constraints
of the terminals significantly impact overall quality. To
further verify the scalability of our algorithm, we tested
its performance by varying the terminal pitch. A smaller
pitch (0.5x) means that more terminals can be placed in
a given area, while a larger pitch (1.5x) allows for fewer
terminals in the same area. Fig. 8 (a) shows that our
algorithm achieves the best results in all situations. In par-
ticular, even for large terminals, the increase in wirelength
is minimal, demonstrating the excellent scalability of our
method. Fig. 8 (b) displays that our algorithm uses the
fewest number of terminals in all cases. In practice, large
terminals often have a greater impact on routability, power
consumption, and other aspects. Therefore, we further
reduce terminal usage when dealing with large terminals.
This shows that our method is more practical for real-
world problems.

2.6E+08

2.7E+08

2.8E+08

2.9E+08

3.0E+08

3.1E+08

3.2E+08

0.5x 1x 1.5x

1 st 2 nd 3 rd Ours

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

0.5x 1x 1.5x

1 st 2 nd 3 rd Ours

(b)
Terminal size

W
ire

le
ng

th

#T
er

m
in

al

(a)
Terminal size

Fig. 8: Extra experiments of different terminal pitch
(Case4).

VI. CONCLUSION

This paper proposes a new paradigm for solving the
D2D placement problem by transforming the original
problem into a bilevel programming problem. By lever-
aging the understanding of the overall solution space, our
placer is able to achieve up to a 4% improvement in
wirelength and a 79% reduction in the number of ter-
minals compared to state-of-the-art methods. Our future
work shall focus on designing strategies for hyperparam-
eter updating in different alternate iterations and initial
solutions for tier optimization.

ACKNOWLEDGMENT

This work is supported in part by the National Key
R&D Program of China (No. 2022YFB4500403), the
Major Key Project of PCL (No. PCL2023AS2-3), the
Strategic Priority Research Program of Chinese Academy
of Sciences (No. XDA0320300).

REFERENCES

[1] K.-S. Hu, I.-J. Lin, Y.-H. Huang, H.-Y. Chi, Y.-H. Wu, and C.-
F. C. Shen, “2022 ICCAD CAD contest problem B: 3D placement
with D2D vertical connections,” in Proceedings of ICCAD. IEEE,
2022, pp. 1–3.

[2] J. Cong and G. Luo, “A multilevel analytical placement for 3D
ICs,” in Proceedings of ASP-DAC. IEEE, 2009, pp. 361–366.

[3] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “TSV-aware analyt-
ical placement for 3D IC designs,” in Proceedings of DAC, 2011,
pp. 664–669.

[4] J. Lu, H. Zhuang, I. Kang, P. Chen, and C.-K. Cheng, “ePlace-
3D: Electrostatics based placement for 3D-ICs,” in Proceedings of
ISPD, 2016, pp. 11–18.

[5] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Placement-driven par-
titioning for congestion mitigation in monolithic 3D IC designs,”
in Proceedings of ISPD, 2014, pp. 47–54.

[6] B. W. Ku, K. Chang, and S. K. Lim, “Compact-2D: A physical
design methodology to build two-tier gate-level 3-D ICs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 6, pp. 1151–1164, 2019.

[7] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Shrunk-2-D: A
physical design methodology to build commercial-quality mono-
lithic 3-D ICs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 10, pp. 1716–1724,
2017.

[8] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan,
“DREAMPlace: Deep learning toolkit-enabled GPU acceleration
for modern VLSI placement,” in Proceedings of DAC, 2019, pp.
1–6.

[9] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng,
and C.-K. Cheng, “ePlace: Electrostatics-based placement using
fast fourier transform and nesterov’s method,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 20,
no. 2, pp. 1–34, 2015.

[10] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W.
Chang, “NTUplace3: An analytical placer for large-scale mixed-

size designs with preplaced blocks and density constraints,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 7, pp. 1228–1240, 2008.

[11] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim,
“TP-GNN: A graph neural network framework for tier partitioning
in monolithic 3D ICs,” in 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC). IEEE, 2020, pp. 1–6.

[12] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization:
from classical to evolutionary approaches and applications,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 2, pp.
276–295, 2017.

[13] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective
detailed placement algorithm,” in Proceedings of ICCAD. IEEE,
2005, pp. 48–55.

[14] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proceedings of DAC. ACM,
1982, pp. 1–6.

[15] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Improved
algorithms for hypergraph bipartitioning,” in Proceedings of the
2000 Asia and South Pacific Design Automation Conference, 2000,
pp. 661–666.

[16] Z. Zhu, J. Chen, Z. Peng, W. Zhu, and Y.-W. Chang, “Gener-
alized augmented lagrangian and its applications to VLSI global
placement,” in Proceedings of DAC. IEEE, 2018, pp. 1–6.

[17] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast
legalization of standard cell circuits with minimal movement,” in
Proceedings of ISPD, 2008, pp. 47–53.

[18] B. Dezső, A. Jüttner, and P. Kovács, “Lemon–an open source C++
graph template library,” Electronic Notes in Theoretical Computer
Science, vol. 264, no. 5, pp. 23–45, 2011.

[19] J. Gu, Z. Jiang, Y. Lin, and D. Z. Pan, “DREAMPlace 3.0:
Multi-electrostatics based robust VLSI placement with region
constraints,” in Proceedings of the 39th International Conference
on Computer-Aided Design, 2020, pp. 1–9.

