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High Interconnection Capacity Technologies

B Primary Technologies: W2W Hybrid Bonding or Monolithic 3-D
B Technical features:

B Heterogeneous processes brings cost advantages
B Higher Interconnection Capacity brings performance advantages

monolithic hybrid bonding  micro-bumping
10° o Via/bump size | 0.3umx0.3um | 0.5umx0.5um 25.0pm
3D microarchitectures _ “\0'50 Via/bump pitch 0.6um 1.0pm 50.0pm
we O oW o Via/bump height 0.1pm 0.17um 25.0um
o 10° ge® O | &
6 2
E 3D partitioned IP_o(®" 2 _ _
@ ) \(ae) Wafer-to-wafer bond g Hybrid W2W Bonding Technology
2 10 o Die-to-wafer bond T — Monolithic 3D Technology
8 . o0 2 — F2F Via
g + Chiplets ?ao\gag ® uPillar F — : Top Carrier Low-Temp. Process MIV
o T j—
] S E = = == =]
N\,\‘” Si0,  CuPad - :- - — + —
v v —
1 0= Solder bal | | J T = - i — ililili —
1000 100 10 1 0.1 — metal — — — — —
Connection Pitch (um) W ﬁ ﬁ W ﬁ ﬁ

(a)

—
(=3
—
_
lg]
—

(d) (e) (M



Advancing Chip Performance through 3D IC

B [Kim+, DAC' 21]: WNS decreased 74% with M3D compared to 2D-IC.
B [Zhu+, TVLSI" 21]: Cortex-A53's frequency is increased by 20% with M3D.

Table 1: Analysis of 2D and 3D designs. The Green
means M3D wins and the Red M3D loses.

Cortex-A7

flow 2D M3D flow 2D M3D
clk. freq. 1.00 1.20 20.07% tot. power 1.00 1.17 17.39%
footprint 1.00 0.50 -50.00% SW. power 0.28 0.34 | 20.12%
wirelength 1.00 1.00 -0.49% int. power 0.55 0.66 | 21.30%
MIV count 0 349,978 - leak. power 0.17 0.17 0.22%
density (%) 79.40 79.26 -0.18% logic power 0.27 0.28 4.73%
worst slack (%) | 0.00 0.11 - seq. power 0.42 0.51 19.24%
total cap 1.00 1.00 0.01% clk. power 0.21 027 | 27.07%
pin cap 0.43 0.42 -2.07% macro power 0.10 0.12 | 23.45%

wire cap 0.57 0.58 1.55% energy per cycle 1.00 0.98

volt. drop (%) 6.56 8.59 temperature (°C ) | 59.28 | 69.99

std. cell area 1.00 1.02 2.33%

flow

M3D

Cortex-A53
flow

clk. freq. 1.00 1.21 21.02% tot. power 1.00 IBER 18.26%
footprint 1.00 0.50 -50.00% SW. power 0.14 0.17 | 17.54%
wirelength 1.00 0.97 -3.43% int. power 0.77 0.93 | 20.78%
MIV count 0 588,161 - leak. power 0.09 0.09 -2.66%
density (%) 72.54 69.92 -3.61% logic power 0.07 0.07 | -3.10%
worst slack (%) | 0.00 0.00 - seq. power 0.30 0.36 | 20.28%
total cap 1.00 1.00 -1.49% clk. power 0.17 0.20 | 18.13%
pin cap 0.43 0.42 -3.57% macro power 0.46 0.55 | 20.31%
wire cap 0.57 0.58 -0.28% energy per cycle 1.00 0.98
volt. drop (%) 7.29 7.71 temperature (°C ) | 54.58 | 67.98
std. cell area 1.00 1.02 1.71%

in2reg

reg2mem

Cortex-A7 2D critical path

reg2reg

in2reg

Cortex-A53 2D critical path

Cortex-A7 3D critical path

reg2reg

Cortex-A53 3D critical path

Fig. 1: Timing critical path comparisons.



Placement is Critical in 3D-IC Flow

B The Main Decider for Variables: Directly determine the x and y
coordinates of the cell, while also determining its corresponding Tier.

B The Main Contributor to Wirelength Reduction: The benefits of 3D-IC
mainly come from the possibility of vertical connections reducing Critical
Path Latency.

sajesjee RS

Fig. 2: 2D-IC Fig. 3: 3D-IC



Problem Formulation

m D2D Placement Problem: 2D die

B Objective: Minimize 3D HPWL (Half Perimeter Wirelength).

B Constraints:

Heterogeneous Process Constraint

« Maximum Utilization Constraint €
. . . Bottom die Top die
« Terminal Spacing Constraint — +
« Cell Legality Constraint
B Challenge: 3D HPWL

1. New Decision Variables.
2. New Heterogeneous process Constraint: Introduces significant variations
for analytical calculations.

3. New Objective Function: Introduces the objective function for the 3D case.



Examples for 3D-HPWL

H 2-pin Net

One large die

H 3-pin Net

Good

One large die

Top die Top die
|j Not
' Good
=
Bottom die Bottom die
I
Top die
Good
> _
Bottom die

L

Cell instance
and pins

Inter-die
terminal

HPWL
calculation
bbox




Related Works

B Bin-based Min-cut Partitioning
[Panth +, TCAD' 17][Panth +, ISPD’ 14] :

B Method: Perform planar placement first, followed by
balanced binary partitioning in each bin.

B TP-GNNjLu +, DAC' 20]

B Method: Use unsupervised learning for partitioning,
aiming to consider multiple objectives.

B Snap-3D[Vanna-lampikul +, TCAD" 22]
B Method: Perform odd-even layering on legal results.
B Existing methods have some limitations:
B Do not consider Partition and Placement as a whole.
B Cannot handle heterogeneous processes.
B Cannot consider MIV Density.

Bin-based min-cut

Initial 3D Flattened 3D Repartition with area
Placement Placement balance in each bin

< Gap

ﬁﬁ

adjacency matrix
Avixvi

Ea

initial node features
{hS vveV} graph learning

(1) Pseudo-3D place and route

(2) Tier splitting

e

node eKmbeddings
{h¥ vvev} weighted k-means clustering

TP-GNN Sna

(3) Cell resizing

-3D

©



Intuition of Our Works

B Requirement:

1. Consider comprehensive objectives, including wirelength,
MIV density, etc.

The model can be solved efficiently.

3. Have a global view of the solution space for the overall
problem.

B Methods:

B |Leverage the natural dominance relationship among decision
variables to model the problem as a whole, efficiently solving

the model with comprehensive objectives.

B Obtain the global view by exchanging information between

two phases.




Bilevel Programming

B Definition of Bilevel Programming: o

Definition 1 (Bilevel Programming). For the upper-level objective
function F' : R" x R™ — R and lower-level objective function
f:R" x R™ — R, the bilevel programming problem is given by

min F(xy,x)
T €EX.p€X T S
r; € argmin{  f(xu, x;)]

S.t. IIEXL

gj(x’uaxl) < Oaj = 17 ey J}
Gk(aiu,:tz) § O,k = 1,...,K,

Inset 1

where G, : R" x R™ — R,k = 1, ..., K denote the upper-level
constraints, and g; : R" x R"™ — R represent the lower-level

Xu

B The optimal solution of Lower-level
problem is the constraint of the upper
level problem.

Inset 2

Y -Mapping
W)
wxP)



Original Model for D2D Placement

B Original Model for D2D Placement:

min > WLi(ejix,y,2,2t;,yt;) + pe(e; z),
X, ¥,2, X, ¥t EJEE

(Po) s.t. Dy(X,y,X¢,¥;,2) < My, Vb € Sy,

Z?:] Al(CE)H(Ez) E “lLtA:, S(e; Z) = H(l — (1 — Zi) — Zi)
D ieq Ao(e)I(1 — z:) < upA, cll_e[e cli_E[e

2e,ep€(€5;2) < Ni.
B Important Observation:

B There is a natural dominance relationship among decision variables.

B Once z is determined, the remaining part is similar to the traditional
2D Placement problem.

B Traditional min-cut based methods struggle to obtain a global view.

v"  Observations provided conditions for building a bilevel programming model



Bilevel Programming Reformulation

B Modeling:

B The upper level variable corresponds to z.

B The lower level variable corresponds to
X] = (XY, Xe, Vo)
B The objective function can be rewrite as.
F(z,x) =WL(:) + pe(*)

B The lower level problem can be defined as:

9(2) = miny {F(z,x,)|Dy(2,x;) < My, VD € S}

Definition 1 (Bilevel Programming). For the upper-level objective
function F : R" x R™ — R and lower-level objective function
f:R™ x R™ — R, the bilevel programming problem is given by
min F(zy, )
T’ueXvalexL

x; € argmin{  f(zu, 2|
s.t. r eXy,

gj(x’uvxl) < Oaj = 1a7J}
Gk(xu,:m) < O,k = ], ...,K,

where G, : R" x R™ — R k = 1,..., K denote the upper-level
constraints, and g; : R" x R™ — R represent the lower-level

£ (xQx))

Inset 1

Xu

Inset 2

Y -Mapping
wxP
)



Bilevel Programming Reformulation

B Modeling:

min  F(z, x’l“) = g(2)

W Use g(2) instead of the original objective function: ™ X1 € U (z)
= iny {F(z,x,)|Dy(z,x,) < M,,Vb ES P4 > iy Ar(e)l(z:) < urA
Y(z) = argmin, {F(z, x;)|Dy(2, x;) b VD € Sp} . (P1) Z?i Ao(enI(] - 1) < wA
Vx;eY(z) wp F(z,x7)=g9(2) 2 e epclejiz) < Ni

B The variable x; does not appear in other constraints and objective. To solve
efficiently, we split the original problem and introduce a surrogate function.

Subproblem 1.

min  §(x), z)
Z

s.t. zzl:l Al (CJH(Z,}) S utA
(SP1) ™ S el = =) < wa
ZejEE e(ej;z) < Ny

(P2)

Subproblem 2.
(SP2) x; " = Proj (xi)

\p(zk—i—l)



Alternate Optimization Framework

Netlist | | Technology Lcﬂlﬁ?ﬁ

\ 4

Flattened Placement

( Bilivel Programming
\ Global Tier Optimization
SP-1

A

¥
Detailed Tier Optimization

¥
Terminal Legalization

: Planar Solution Correcting
o |

No

Converge?

Multi-Tier Placement
\ 2

3D Detailed Placement J
¥ §
LG & DP " Output




Flattened Placement

B Goal:
B Obtaining a high-quality initial planar solution is
crucial at the beginning of iterative solving.
B The planar solution can also provide sufficient
information for the surrogate function j(x;,z).

B Method:
B Place all standard cells in one layer and double the capacity of the bin. Then solve the
global placement problem to obtain x, .

m Upper bound:
B The quality of the optimal planar solution obtained from Flattened Placement is the upper
bound for the final 3D solution.

v' Theorem1: WL(x5p) < WL(x,_3p) < WL(x3p)



Tier Optimization

H Goal:

B Consider MIV Density + Wirelength: Changes in the vertical coordinates -
not only affect #terminals but also lead to additional wirelength changes /IIA}IJ/

caused by terminals.

B Optimized from two perspectives of coarse-grained and fine-grained:
Coarse-grained can provide a relatively good initial solution, while fine-
grained can further refinement.

B Modeling:
B Transform the problem into a search problem.
B By restricting the movement direction, consider only
one linear constraint, namely the knapsack constraint. (SP1)
B Cascade Terminal Legalization: After a movement,
the newly added terminals must have valid positions
to satisfy the terminal constraint.

min  §(x;,2)
Do Ar(ei)(z:) < usA
Z?:l AO(Ci)H(l — Zz) < upA
Zej ckl €(€j; Z) g Nt

v Optimizes (x,y) and z alternately



Tier Optimization

B Global Layer Optimization: O
B Best Improvement: NS o —— ey T I
p Bottom Row Cli §C7 {23:C_4.
B Select the cell with the highest gain for movement.  Heieht  f—x ] }ROWTI‘;I;ght
B Maintain priority using a priority queue: p(sujc"(}g;p(s) R =
t i I . : I I .
B After moving the cell, update the priority based on the net s e
and region relationship. p(SU{ci}) — p(S) = Awirelenth + pA#Terminal
B Surrogate function: +a(d(SU{e}) —d(9)) (102)
: N +B(o(S U{ei}) = o(9))
B Cascade Terminal Legalization. —d(S)
B \When y is sufficiently large, select the region with the ...
highest density, and sort the remaining parts within the 15— Y (Ar — M, 0
region based on their weights. a regimmax he 7
P : . : n 10b
B Knapsack maximization like priority calculation. o(8) =3 3 Overlap(e c) O

he,

1=1 CjE{Cj |VCJ EV,Zj :Zi}

v Optimizes (x,y) and z alternately



Tier Optimization

B Detailed Layer Optimization
B First Improvement:
W Select a limited number of cells for evaluation.
B Dynamic Row-based Data Structure:
B Maintain the partial order relationship among all cells, allowing changes.

B Implement the insertion and deletion of units at any position in a row.

B Detailed Layer Optimization

B Dynamically maintain a legal solution for fsert6 | Mgt [ tnst | Tnst | Inst | Inst

3 5 6 7 8

accurate evaluation of improvements.

Cluster 3

B Simple 3D Detailed Placement: 3| s 7 | 8
B Global Swap for the 3D case. e il
® Quickly generate legal solutions and

calculate actual gains.

Inst | Inst Inst | Inst O

Inst | Inst Inst
Delete 7 3 5 ]

Cluster 3 Cluster 8




Terminal Legalization

B Terminal Legalization:
B Problem Characteristics:

® Terminals are of the same size. e
m Cost calculation is independent. S.t.
® Method:

B Grid Generation: Divide the layout into grids that exactly
satisfy the spacing constraint.

B Candidate Selection: Select k candidate positions around
each terminal in its optimal region.

B Graph Construction and Solving: Construct a bipartite
graph with terminals and candidate positions, and solve it
using the network simplex algorithm.

B Post-processing: Introduce perturbations to the placed
terminals to allow for further optimization of the objective
beyond the grid.

i=1

min Y WL(e; U{t;}ixe,) + WL(el U{t;}ix))

min(lxti o xfj |= |ytz T ytj D Z O?

2.12

1.5

1.5

2.12

1.5

1.5

1.5

e
PO D
v)

1.5

2.12

1.5

1.5

1.5

2.12

Cost of single terminal’s
candidate locations

Vi,j=1,2,...,m.

O

Candidate
Locations

Terminals

Theorem2: WL(x,.,) < WL(x;,,id) + 2C#terminal

r



Terminal Legalization

B Terminal Legalization Upper bound:
®m Proof:

B From a optimal no overlap solution (x;, y;), if you
want to get a grid solution (x/, y/), you can move the
terminals down or up until align the nearest grid. At

m m
L : C Z |zy. — x| = min(z ¢ mod C),
this time, the sum of all the moves in one direction is = ;

=1 (12)
mC

2

C m
less than or equal to mT and the absolute value of the Z(C — 27 mod C)) <

=1
slope of WL(-) is less than or equal to 2, so the total ’

change in the objective function is less than or equal

to 2C#terminal.

v' Theorem2: WL(x,.q) < WL(xZ,,id) + 2C#terminal

r



Experimental Results - Statistics

H Public

case1 case2 case3 case4
Die size 30 x 30 10175 x 8151 19240 x 19192 53294 x 53255
#nets 6 2644 44360 220071
#celllnsts 8 2735 44764 220845
max #inter-die terminals 4 2000 36481 183612
max u-rate of top die 80 70 78 66
max u-rate of bottom die 90 75 78 70
diff tech? Yes Yes No Yes
B Hidden
case2_hidden case3 _hidden case4 hidden

Die size 11670 x 9349 17599 x 17555 55988 x 55947

#nets 2644 44360 220071

#celllnsts 2735 44764 220845

max #inter-die terminals 2000 36100 178929

max u-rate of top die 79 68 66

max u-rate of bottom die 79 78 76

diff tech? No Yes Yes




Experimental Results

B Overview:

@

@

Compared to the top three competitors, there is an improvement in wirelength of 4.33%, 4.42%,
and 5.88%, respectively. The speed is 1.84x faster than the first-place competitor.

#Terminals used is the lowest, with improvements of 79.61%, 16.74%, and 15.76% compared
to the top three competitors.

The final result shows an increase in wirelength of 7.63% compared to Flatten GP (Theorem 1).

TABLE I
EXPERIMENTAL RESULTS ON ICCAD 2022 CONTEST BENCHMARKS.
Case Flattened 3th 2nd st Ours
GP HPWL #Terminal CPU(s) HPWL #Terminal CPU(s) HPWL #Terminal CPU(s) HPWL #Terminal CPU(S)Jr
case2 1758214 2097487 163 10 2080647 477 14 2072075 1131 45 1992499 461 45
case2_hidden 2111322 2644791 151 9 2735158 687 15 2555461 1083 40 2530195 658 33
case3 26474613 33063568 14788 145 30969011 11257 437 30580336 16820 635 30234112 9612 442
case3_hidden 24200040 28372567 11211 133 27756492 8953 482 27650329 16414 412 26939286 8203 479
cased 248129463 | 281378079 46468 925 274026687 51480 3284 281315669 84069 2580 267381744 43140 1078
cased_hidden | 272085522 | 307399565 58860 983 308359159 59896 3283 301193374 84728 2239 289541474 51641 1144
N.Total -7.63% 5.88% 15.76% 0.68 4.42% 16.74% 2.32 4.33% 79.61% 1.84 0.00% 0.00% 1.00




Experimental Results—Terminal Legalization

B Terminal Legalization:

B TOR (Terminal Optimal Region): Terminals are in the optimal positions where allows
the existence of overlap.

m Conclusion: In practice, the difference between the final results and the upper bound
is typically less than 0.5%. It's almost near optimal (Theorem 2).

Case C #Terminal WL CPU(s) TOR Ratio
case2 200 461 1992499 1 1981785 0.54%
case2_hidden | 228 658 2530195 | 2512837 0.69%
case3 100 9612 30234112 7 30141038 | 0.31%
case3_hidden 92 8203 26939286 5 26875050 0.24%
case4 124 43140 267381744 15 266850007 | 0.20%
case4_hidden | 132 51641 289541474 16 288659033 | 0.30%




Experimental Results - Ablation Study

m Ablation Study:

B Investigating the impact of information exchange through alternating iterations.

m w/ Alternating Opt : Allows alternating optimization and mutual information
propagation through alternating iterations.

® w/o. Alternating Opt : Does not allow alternating iterations.,

B Conclusion: Alternating iterations enable information exchange, thereby further
optimizing the objective while using fewer terminals.

Case w/o. Alternating Optimization. w/ Alternating Optimization

HPWL #Terminal | CPU(s) HPWL #Terminal | CPU(s)

case2 2032655 555 20 1992499 461 45

case2_hidden 2562890 793 19 2530195 658 53

case3 30332531 10604 135 30234112 9612 442

case3_hidden | 26935732 9288 128 26939286 8203 479
case4 270042122 54112 604 267381744 43140 1,078
case4_hidden | 294923683 63283 637 289541474 51641 1,144
N.Total 1.33% 21.91% 0.48 0.00% 0.00% 1.00




Experimental Results - Terminal Size Changes

B Additional Experiment:

m Left Figure: Our method has certain advantages in both trend and quality when the
terminal size changes.

m Right Figure: Our algorithm can perceive the changes in terminal size and adaptively
adjust the number of terminals.

1 st —2nd =3 rd —Ours I'st—2nd —3rd —Ours
3.2E+08 1.2E+05
5 S 1.0B+05
= 3.0E+08 g '
© = 8.0E+04
= 2.8E+08 * 6.0E+04
;
2 6E+08 4 OE-+04 e,
0.5x Ix 1.5x 0.5x Ix 1.5x
Terminal size Terminal size
(a) b
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Conclusion

B Contributions:

m We propose a novel Bilevel programming modeling approach for the D2D Placement
problem.

B We present a complete iterative optimization framework to solve the Bilevel
programming problem.

m We introduce a parallel partition algorithm that considers comprehensive objectives,
as well as a near-optimal MIV Assignment algorithm.

B Compared to the top three competitors, we achieve up to a 5.88% improvement in
wirelength and a 79.61% reduction in the number of terminals.

B Discussion:
B The analysis of the initial solution is still a little insufficient.
B Lack of process information to assess improvement in actual timing.
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