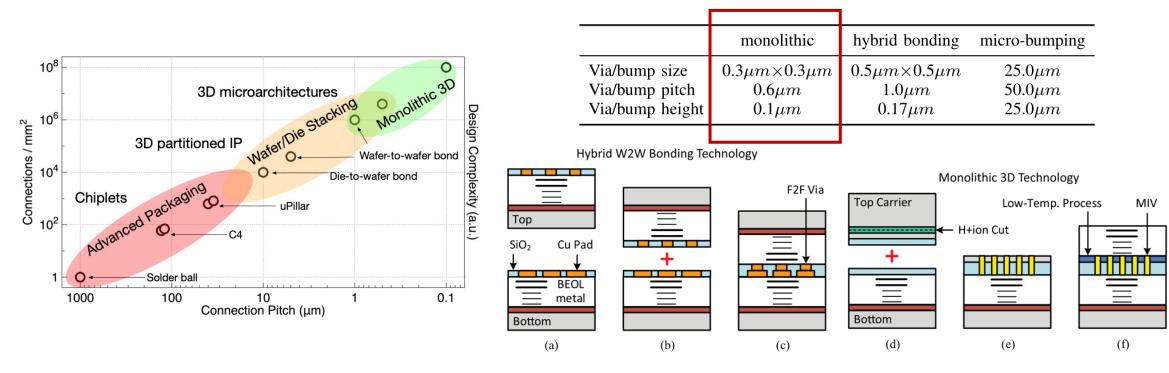


Xueyan Zhao¹, Shijian Chen², Yihang Qiu³, Jiangkao Li⁴, Zhipeng Huang², Biwei Xie¹, Xingquan Li⁴, and Yungang Bao¹
 ¹Institute of Computing Technology, CAS, ²Peng Cheng Laboratory, ³University of Chinese Academy of Sciences, ⁴Minnan Normal University,

High Interconnection Capacity Technologies

- Primary Technologies: W2W Hybrid Bonding or Monolithic 3-D
 Technical features:
 - Heterogeneous processes brings cost advantages
 - Higher Interconnection Capacity brings performance advantages



Advancing Chip Performance through 3D IC

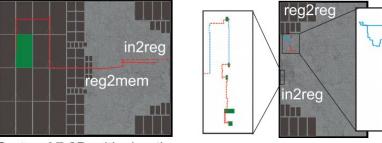
■ [Kim+, DAC' 21]: WNS decreased 74% with M3D compared to 2D-IC.

[Zhu+, TVLSI' 21]: Cortex-A53's **frequency** is **increased by 20%** with M3D.

Table 1: Analysis of 2D and 3D designs. The **Green** means M3D **wins** and the **Red** M3D **loses**.

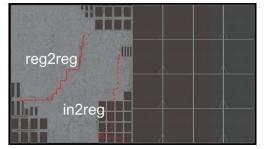
	Cortex-A7									
flow	2D	M3D	Δ	flow	2D	M3D	Δ			
clk. freq.	1.00	1.20	20.07%	tot. power	1.00	1.17	17.39%			
footprint	1.00	0.50	-50.00%	sw. power	0.28	0.34	20.12%			
wirelength	1.00	1.00	-0.49%	int. power	0.55	0.66	21.30%			
MIV count	0	349,978	-	leak. power	0.17	0.17	0.22%			
density (%)	79.40	79.26	-0.18%	logic power	0.27	0.28	4.73%			
worst slack (%)	0.00	0.11	-	seq. power	0.42	0.51	19.24%			
total cap	1.00	1.00	0.01%	clk. power	0.21	0.27	27.07%			
pin cap	0.43	0.42	-2.07%	macro power	0.10	0.12	23.45%			
wire cap	0.57	0.58	1.55%	energy per cycle	1.00	0.98	-2.23%			
volt. drop (%)	6.56	8.59	30.91%	temperature (°C)	59.28	69.99	18.07%			
std. cell area	1.00	1.02	2.33%							

	Cortex-A53									
flow	2D	M3D	Δ	flow	2D	M3D	Δ			
clk. freq.	1.00	1.21	21.02%	tot. power	1.00	1.18	18.26%			
footprint	1.00	0.50	-50.00%	sw. power	0.14	0.17	17.54%			
wirelength	1.00	0.97	-3.43%	int. power	0.77	0.93	20.78%			
MIV count	0	588,161	-	leak. power	0.09	0.09	-2.66%			
density (%)	72.54	69.92	-3.61%	logic power	0.07	0.07	-3.10%			
worst slack (%)	0.00	0.00	-	seq. power	0.30	0.36	20.28%			
total cap	1.00	1.00	-1.49%	clk. power	0.17	0.20	18.13%			
pin cap	0.43	0.42	-3.57%	macro power	0.46	0.55	20.31%			
wire cap	0.57	0.58	-0.28%	energy per cycle	1.00	0.98	-2.28%			
volt. drop (%)	7.29	7.71	5.83%	temperature (°C)	54.58	67.98	24.55%			
std. cell area	1.00	1.02	1.71%							

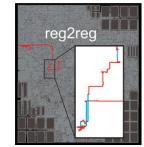


Cortex-A7 2D critical path

Cortex-A7 3D critical path



Cortex-A53 2D critical path



Cortex-A53 3D critical path

Fig. 1: Timing critical path comparisons.

Placement is Critical in 3D-IC Flow

- The Main Decider for Variables: Directly determine the x and y coordinates of the cell, while also determining its corresponding Tier.
- The Main Contributor to Wirelength Reduction: The benefits of 3D-IC mainly come from the possibility of vertical connections reducing Critical Path Latency.

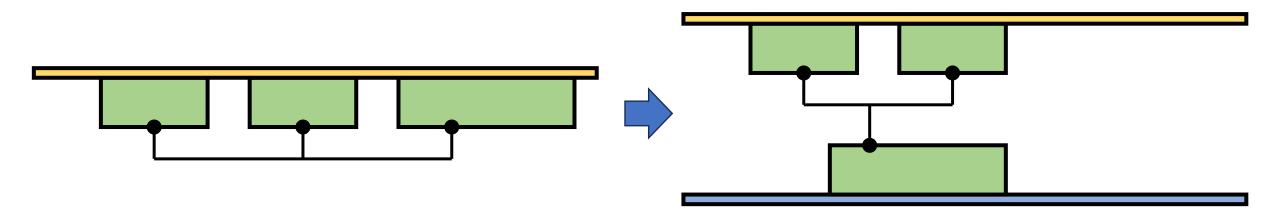


Fig. 3: 3D-IC

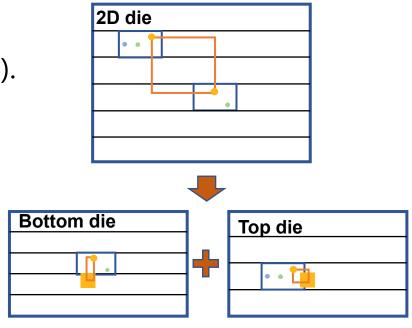
Problem Formulation

D2D Placement Problem:

- Objective: Minimize 3D HPWL (Half Perimeter Wirelength).
- Constraints:
 - Heterogeneous Process Constraint
 - Maximum Utilization Constraint
 - Terminal Spacing Constraint
 - Cell Legality Constraint

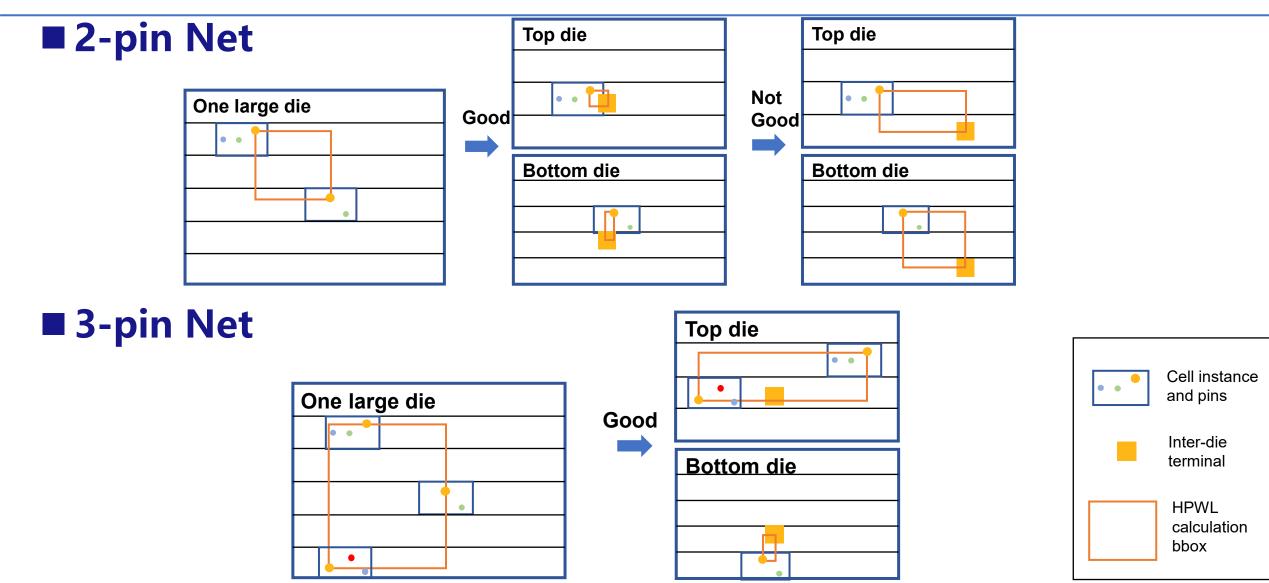
Challenge:

- 1. New Decision Variables.
- 2. New Heterogeneous process Constraint: Introduces significant variations for analytical calculations.
- 3. New Objective Function: Introduces the objective function for the 3D case.



3D HPWL

Examples for 3D-HPWL



2022 ICCAD CAD Contest Problem B: 3D Placement with D2D Vertical Connections: , Prob

, Problem Description, Benchmarks, and Results, ICCAD22

Related Works

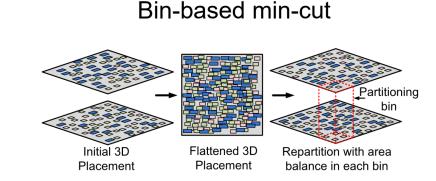
Bin-based Min-cut Partitioning

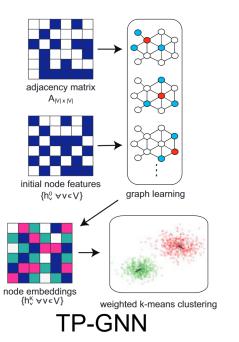
[Panth +, TCAD' 17][Panth +, ISPD' 14] *****

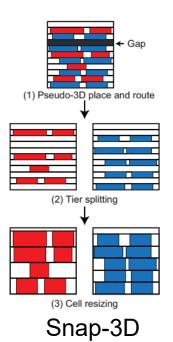
- Method: Perform planar placement first, followed by balanced binary partitioning in each bin.
- **TP-GNN**[Lu +, DAC' 20]
 - Method: Use unsupervised learning for partitioning, aiming to consider multiple objectives.
- Snap-3D[Vanna-lampikul +, TCAD' 22]
 - Method: Perform odd-even layering on legal results.

Existing methods have some limitations:

- Do not consider Partition and Placement as a **whole**.
- Cannot handle heterogeneous processes.
- Cannot consider MIV Density.







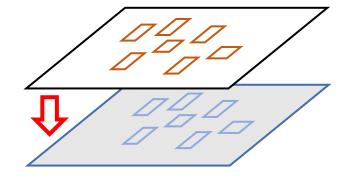
Intuition of Our Works

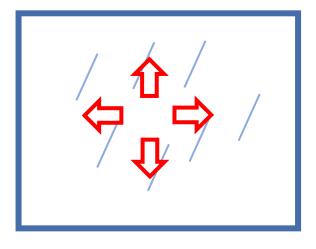
Requirement:

- 1. Consider **comprehensive objectives**, including wirelength, MIV density, etc.
- 2. The model can be **solved efficiently**.
- 3. Have a **global view of the solution space** for the overall problem.

Methods:

- Leverage the natural dominance relationship among decision variables to model the problem as a whole, efficiently solving the model with comprehensive objectives.
- Obtain the global view by exchanging information between two phases.





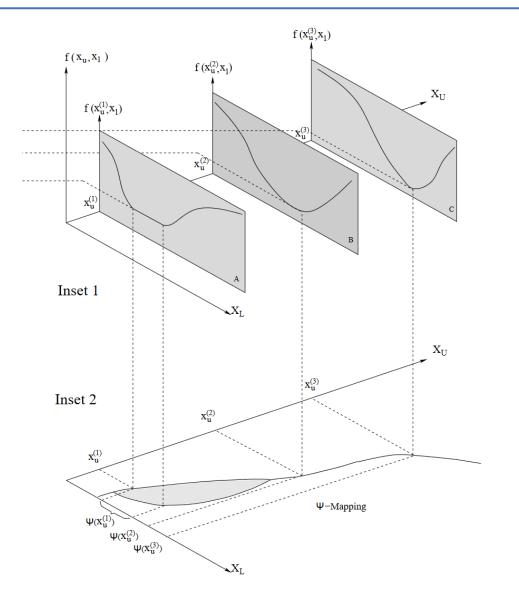
Bilevel Programming

Definition of Bilevel Programming:

Definition 1 (Bilevel Programming). For the upper-level objective function $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and lower-level objective function $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, the bilevel programming problem is given by

$\min_{x_u \in X_U, x_l \in X_L}$	$F(x_u, x_l)$	
	$x_l \in \arg\min\{$	$ f(x_u, x_l) $
s.t.	$x_l \in X_L$	$q_i(x_u, x_l) \le 0, j = 1,, J$
	$G_k(x_u, x_l) \le 0,$	
	$\Box_{\kappa}(\omega_{u},\omega_{l}) \ge 0,$	
where G_k : \mathbb{R}^n	$\times \mathbb{R}^m \to \mathbb{R}, k =$	1,, K denote the upper-level
constraints, and	$g_j : \mathbb{R}^n \times \mathbb{R}^m$	$\rightarrow \mathbb{R}$ represent the lower-level

The optimal solution of Lower-level problem is the constraint of the upper level problem.



Original Model for D2D Placement

Original Model for D2D Placement:

(Po)
$$\min_{\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{x}_{t},\mathbf{y}_{t}} \sum_{e_{j}\in E} WL_{t}(e_{j};\mathbf{x},\mathbf{y},\mathbf{z},x_{t_{j}},y_{t_{j}}) + \rho\varepsilon(e;\mathbf{z}),$$
$$D_{b}(\mathbf{x},\mathbf{y},\mathbf{x}_{t},\mathbf{y}_{t},\mathbf{z}) \leq M_{b}, \forall b \in S_{b},$$
$$\sum_{i=1}^{n} A_{1}(c_{i})\mathbb{I}(z_{i}) \leq u_{t}A,$$
$$\sum_{i=1}^{n} A_{0}(c_{i})\mathbb{I}(1-z_{i}) \leq u_{b}A,$$
$$\sum_{e_{j}\in E} \varepsilon(e_{j};\mathbf{z}) \leq N_{t}.$$

$$\varepsilon(e; \mathbf{z}) = \mathbb{I}(1 - \prod_{c_i \in e} (1 - z_i) - \prod_{c_i \in e} z_i)$$

Important Observation:

- There is a **natural dominance relationship** among decision variables.
- Once z is determined, the remaining part is similar to the traditional 2D Placement problem.
- Traditional min-cut based methods **struggle to obtain a global view**.

Observations provided conditions for building a bilevel programming model

Bilevel Programming Reformulation

Modeling:

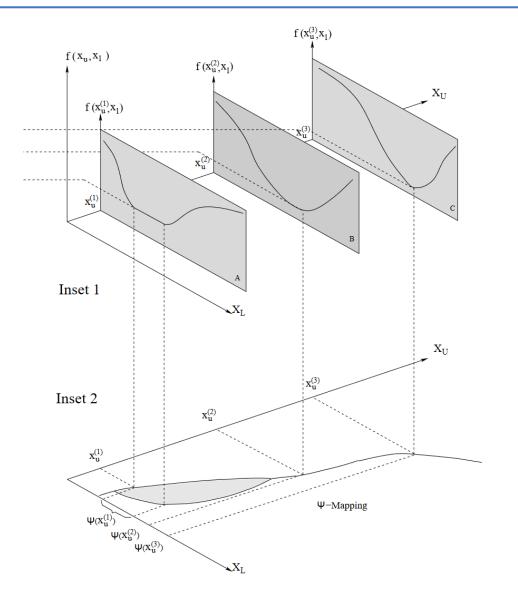
- The **upper level variable** corresponds to *z*.
- The **lower level variable** corresponds to $x_1 = (x, y, x_t, y_t)$.
- The **objective function** can be rewrite as.

 $F(\mathbf{z}, \mathbf{x}_l) = WL(\cdot) + \rho\varepsilon(\cdot)$

■ The **lower level problem** can be defined as:

 $g(\mathbf{z}) = \min_{\mathbf{x}_l} \{ F(\mathbf{z}, \mathbf{x}_l) | D_b(\mathbf{z}, \mathbf{x}_l) \le M_b, \forall b \in S_b \}$

Definition 1 (Bilevel Programming). For the upper-level objective function $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ and lower-level objective function $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, the bilevel programming problem is given by $\min_{\substack{x_u \in X_U, x_l \in X_L \\ x_l \in X_L \\ x_l \in X_L \\ g_j(x_u, x_l) \leq 0, j = 1, ..., J\}}$ $G_k(x_u, x_l) \leq 0, k = 1, ..., K,$ where $G_k : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}, k = 1, ..., K$ denote the upper-level constraints, and $g_j : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ represent the lower-level



Bilevel Programming Reformulation

Modeling:

- Use g(z) instead of the original objective function:
- $\psi(\mathbf{z}) = \operatorname{argmin}_{\mathbf{x}_{l}} \{ F(\mathbf{z}, \mathbf{x}_{l}) | D_{b}(\mathbf{z}, \mathbf{x}_{l}) \le M_{b}, \forall b \in S_{b} \}$ $\forall \mathbf{x}_{l}^{*} \in \psi(\mathbf{z}) \quad \Longrightarrow \quad F(\mathbf{z}, \mathbf{x}_{l}^{*}) = g(\mathbf{z})$ (P1)

$$\min_{\mathbf{z},\mathbf{x}_l} F(\mathbf{z},\mathbf{x}_l^*) = g(\mathbf{z})$$

s.t.
$$\mathbf{x}_l \in \Psi(\mathbf{z})$$
$$\sum_{i=1}^n A_1(c_i) \mathbb{I}(z_i) \le u_t A$$
$$\sum_{i=1}^n A_0(c_i) \mathbb{I}(1-z_i) \le u_b A$$
$$\sum_{e_j \in E} \varepsilon(e_j; \mathbf{z}) \le N_t$$

The variable x_l does not appear in other constraints and objective. To solve efficiently, we split the original problem and introduce a surrogate function.

Subproblem 1.

(SP1)
$$\begin{array}{ll} \min_{\mathbf{z}} & \hat{g}(\mathbf{x}_{l}^{k}, \mathbf{z}) \\ s.t. & \sum_{i=1}^{n} A_{1}(c_{i}) \mathbb{I}(z_{i}) \leq u_{t}A \\ & \sum_{i=1}^{n} A_{0}(c_{i}) \mathbb{I}(1-z_{i}) \leq u_{b}A \\ & \sum_{e_{j} \in E} \varepsilon(e_{j}; \mathbf{z}) \leq N_{t} \end{array}$$

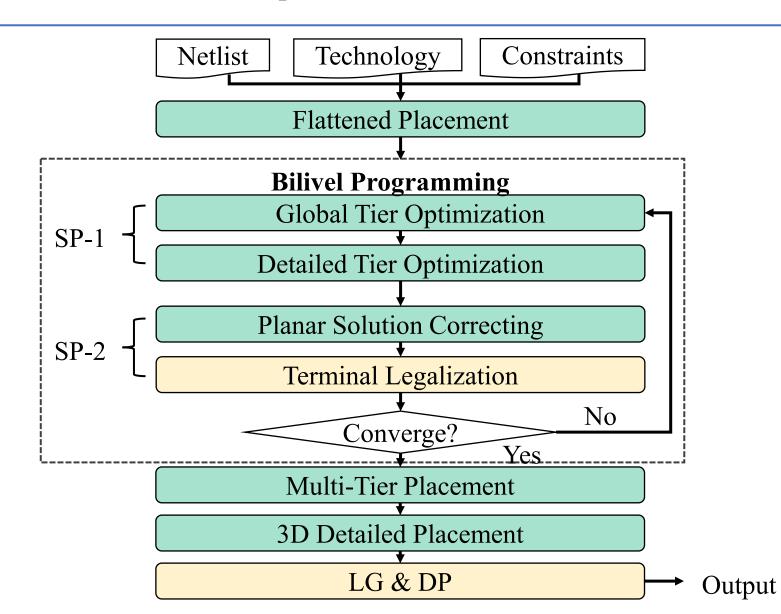
Subproblem 2.

(SP2)

(P₂)

$$\mathbf{x}_{l}^{k+1} = \Pr{oj}_{\Psi(\mathbf{z}^{k+1})}(\mathbf{x}_{l}^{k})$$

Alternate Optimization Framework

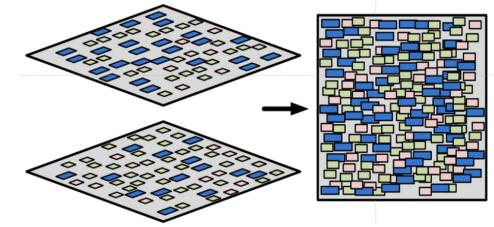


Flattened Placement

Goal:

- Obtaining a high-quality initial planar solution is crucial at the beginning of iterative solving.
- The planar solution can also provide sufficient information for the surrogate function $\hat{g}(x_l, z)$.

Method:



Place all standard cells in one layer and double the capacity of the bin. Then solve the global placement problem to obtain x_{2D} .

Upper bound:

The quality of the optimal planar solution obtained from Flattened Placement is the upper bound for the final 3D solution.

✓ Theorem1: $WL(x_{2D}^*) \le WL(x_{2\to 3D}) \le WL(x_{3D}^*)$

Tier Optimization

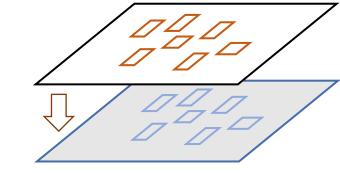
■ Goal:

- Consider MIV Density + Wirelength: Changes in the vertical coordinates not only affect #terminals but also lead to additional wirelength changes caused by terminals.
- Optimized from two perspectives of coarse-grained and fine-grained: Coarse-grained can provide a relatively good initial solution, while finegrained can further refinement.

Modeling:

- Transform the problem into a **search problem**.
- By restricting the movement direction, consider only one linear constraint, namely the knapsack constraint. (SP1)
- Cascade Terminal Legalization: After a movement, the newly added terminals must have valid positions to satisfy the terminal constraint.

Optimizes (x, y) and z alternately

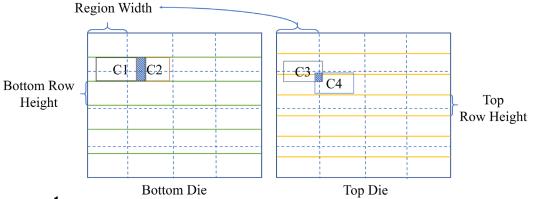


 $\min_{\mathbf{z}} \quad \hat{g}(\mathbf{x}_l^k, \mathbf{z})$ s.t. $\sum_{\substack{i=1\\n}}^{n} A_1(c_i) \mathbb{I}(z_i) \le u_t A$ $\sum_{\substack{i=1\\i=1}}^{n} A_0(c_i) \mathbb{I}(1-z_i) \le u_b A$ $\sum_{e_j \in E} \varepsilon(e_j; \mathbf{z}) \le N_t$

Tier Optimization

Global Layer Optimization:

- Best Improvement:
 - Select the cell with the **highest gain** for movement.
 - Maintain priority using a **priority queue**: $\frac{p(S \cup \{c_i\}) p(S)}{A_t(c_i)}$
 - After moving the cell, update the priority based on the net and region relationship.
- Surrogate function:
 - Cascade Terminal Legalization.
 - When γ is sufficiently large, select the region with the where highest density, and sort the remaining parts within the region based on their weights.
- Knapsack maximization like priority calculation.



$$p(S \cup \{c_i\}) - p(S) = \Delta \text{wirelenth} + \rho \Delta \#\text{Terminal} + \alpha \left(d(S \cup \{c_i\}) - d(S) \right) + \beta \left(o(S \cup \{c_i\}) - o(S) \right) - \gamma d(S),$$
(10a)

$$d(S) = \sum_{\text{region } r} \max(\frac{A_r - M_r}{h_r}, 0),$$

$$o(S) = \sum_{i=1}^n \sum_{c_j \in \{c_j | \forall c_j \in V, z_j = z_i\}} \frac{\text{Overlap}(c_j, c_i)}{h_{c_i}}$$
(10b)

Optimizes (x, y) and z alternately

Tier Optimization

Detailed Layer Optimization

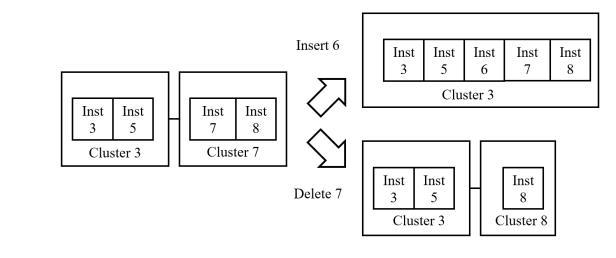
- First Improvement:
 - Select a limited number of cells for evaluation.

Dynamic Row-based Data Structure:

- Maintain the **partial order relationship** among all cells, allowing changes.
- Implement the **insertion and deletion** of units at any position in a row.

Detailed Layer Optimization

- Dynamically maintain a legal solution for accurate evaluation of improvements.
- Simple 3D Detailed Placement:
 - Global Swap for the 3D case.
 - Quickly generate legal solutions and calculate actual gains.



Terminal Legalization

Terminal Legalization:

- Problem Characteristics:
 - Terminals are of the same size.
 - Cost calculation is independent.

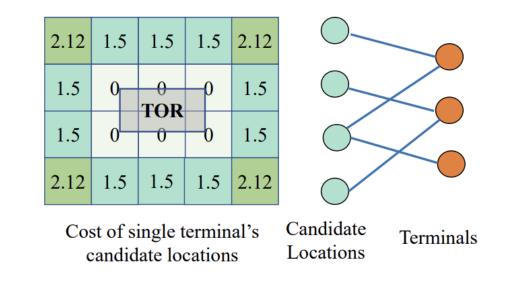
Method:

- Grid Generation: Divide the layout into grids that exactly satisfy the spacing constraint.
- Candidate Selection: Select k candidate positions around each terminal in its optimal region.
- Graph Construction and Solving: Construct a bipartite graph with terminals and candidate positions, and solve it using the network simplex algorithm.
- Post-processing: Introduce perturbations to the placed terminals to allow for further optimization of the objective beyond the grid.

Theorem2: $WL(x^*_{real}) \leq WL(x^*_{grid}) + 2C$ #terminal

$$\min_{\mathbf{x}_{t}, \mathbf{y}_{t}} \quad \sum_{j=1}^{m} WL(e_{j}^{-} \cup \{t_{j}\}; \mathbf{x}_{e_{j}}) + WL(e_{j}^{+} \cup \{t_{j}\}; \mathbf{x}_{e_{j}})$$
s.t.
$$\min(|x_{t_{i}} - x_{t_{j}}|, |y_{t_{i}} - y_{t_{j}}|) \ge C,$$

$$\forall i, j = 1, 2, ..., m.$$



Terminal Legalization

Terminal Legalization Upper bound:

■ Proof:

From a **optimal no overlap solution** (x_t^*, y_t^*) , if you want to get a **grid solution** (x_t', y_t') , you can move the terminals **down or up** until **align the nearest grid**. At this time, the sum of all the moves in one direction is less than or equal to $\frac{mC}{2}$, and the absolute value of the slope of $WL(\cdot)$ is less than or equal to 2, so the total change in the objective function is less than or equal to 2C#terminal.

$$\sum_{j=1}^{m} |x'_{t_j} - x^*_{t_j}| = \min(\sum_{j=1}^{m} x^*_{t_j} \mod C, \\ \sum_{j=1}^{m} (C - x^*_{t_j} \mod C)) \le \frac{mC}{2}$$
(12)

✓ Theorem2: $WL(x^*_{real}) \le WL(x^*_{grid}) + 2C$ #terminal

Experimental Results - Statistics

Public

	case1	case2	case3	case4
Die size	30 x 30	10175 x 8151	19240 x 19192	53294 x 53255
#nets	6	2644	44360	220071
#cellInsts	8	2735	44764	220845
max #inter-die terminals	4	2000	36481	183612
max u-rate of top die	80	70	78	66
max u-rate of bottom die	90	75	78	70
diff tech?	Yes	Yes	No	Yes

Hidden

	case2_hidden	case3_hidden	case4_hidden
Die size	11670 x 9349	17599 x 17555	55988 x 55947
#nets	2644	44360	220071
#cellInsts	2735	44764	220845
max #inter-die terminals	2000	36100	178929
max u-rate of top die	79	68	66
max u-rate of bottom die	79	78	76
diff tech?	No	Yes	Yes

Experimental Results

Overview:

- Compared to the top three competitors, there is an improvement in wirelength of 4.33%, 4.42%, and 5.88%, respectively. The speed is 1.84x faster than the first-place competitor.
- ② #Terminals used is the lowest, with improvements of 79.61%, 16.74%, and 15.76% compared to the top three competitors.
- **③** The final result shows an increase in wirelength of 7.63% compared to Flatten GP (Theorem 1).

Case	Flattened		3th	3th		2nd		1st			Ours		
Case	GP	HPWL	#Terminal	CPU(s)	HPWL	#Terminal	CPU(s)	HPWL	#Terminal	CPU(s)	HPWL	#Terminal	CPU(s) [†]
case2	1758214	2097487	163	10	2080647	477	14	2072075	1131	45	1992499	461	45
case2_hidden	2111322	2644791	151	9	2735158	687	15	2555461	1083	40	2530195	658	53
case3	26474613	33063568	14788	145	30969011	11257	437	30580336	16820	635	30234112	9612	442
case3_hidden	24200040	28372567	11211	133	27756492	8953	482	27650329	16414	412	26939286	8203	479
case4	248129463	281378079	46468	925	274026687	51480	3284	281315669	84069	2580	267381744	43140	1078
case4_hidden	272085522	307399565	58860	983	308359159	59896	3283	301193374	84728	2239	289541474	51641	1144
N.Total	-7.63%	5.88%	15.76%	0.68	4.42%	16.74%	2.32	4.33%	79.61%	1.84	0.00%	0.00%	1.00
1.			•						· · · · · · · · · · · · · · · · · · ·			•	

TABLE IEXPERIMENTAL RESULTS ON ICCAD 2022 CONTEST BENCHMARKS.

Experimental Results—Terminal Legalization

Terminal Legalization:

- TOR (Terminal Optimal Region): Terminals are in the optimal positions where allows the existence of overlap.
- Conclusion: In practice, the difference between the final results and the upper bound is typically less than 0.5%. It's almost near optimal (Theorem 2).

Case	C	#Terminal	WL	CPU(s)	TOR	Ratio
case2	200	461	1992499	1	1981785	0.54%
case2_hidden	228	658	2530195	1	2512837	0.69%
case3	100	9612	30234112	7	30141038	0.31%
case3_hidden	92	8203	26939286	5	26875050	0.24%
case4	124	43140	267381744	15	266850007	0.20%
case4_hidden	132	51641	289541474	16	288659033	0.30%

Experimental Results - Ablation Study

Ablation Study:

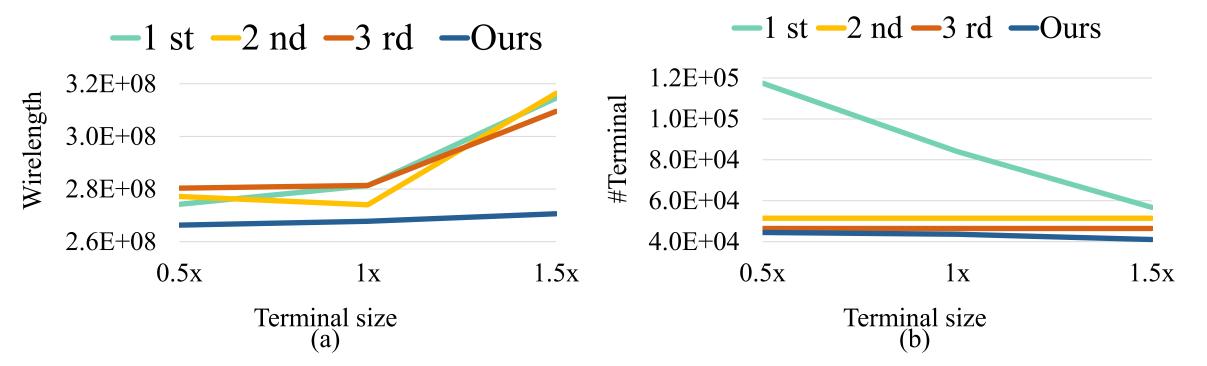
- Investigating the impact of information exchange through alternating iterations.
- w/ Alternating Opt : Allows alternating optimization and mutual information propagation through alternating iterations.
- w/o. Alternating Opt : Does not allow alternating iterations..
- Conclusion: Alternating iterations enable information exchange, thereby further optimizing the objective while using fewer terminals.

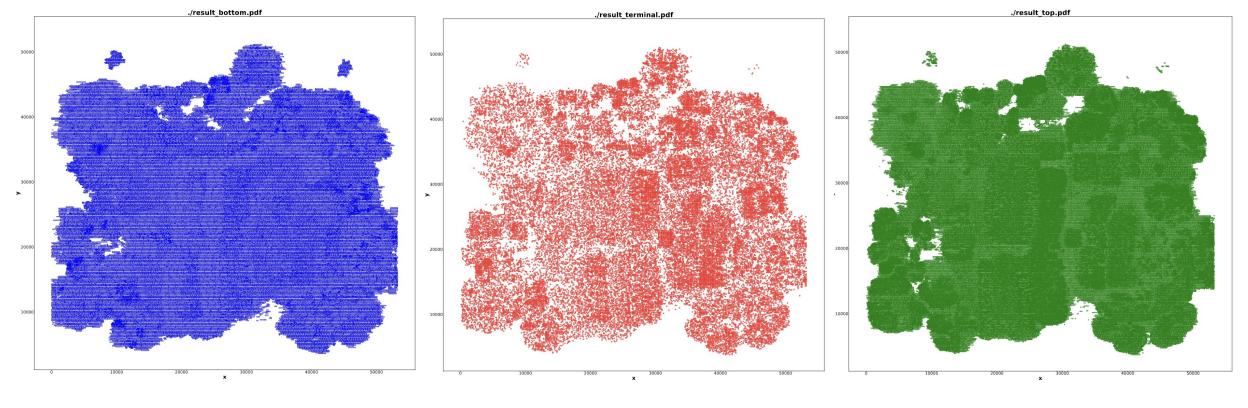
Case	w/o. Alter	nating Optimi	zation.	w/ Alternating Optimization			
Case	HPWL	#Terminal	CPU(s)	HPWL	#Terminal	CPU(s)	
case2	2032655	555	20	1992499	461	45	
case2_hidden	2562890	793	19	2530195	658	53	
case3	30332531	10604	135	30234112	9612	442	
case3_hidden	26935732	9288	128	26939286	8203	479	
case4	270042122	54112	604	267381744	43140	1,078	
case4_hidden	294923683	63283	637	289541474	51641	1,144	
N.Total	1.33%	21.91%	0.48	0.00%	0.00%	1.00	

Experimental Results - Terminal Size Changes

Additional Experiment:

- Left Figure: Our method has certain advantages in both trend and quality when the terminal size changes.
- Right Figure: Our algorithm can perceive the changes in terminal size and adaptively adjust the number of terminals.





Bottom

Terminal

Тор

Conclusion

Contributions:

- We propose a novel Bilevel programming modeling approach for the D2D Placement problem.
- We present a complete iterative optimization framework to solve the Bilevel programming problem.
- We introduce a parallel partition algorithm that considers comprehensive objectives, as well as a near-optimal MIV Assignment algorithm.
- Compared to the top three competitors, we achieve up to a 5.88% improvement in wirelength and a 79.61% reduction in the number of terminals.

Discussion:

- The analysis of the **initial solution** is still a little insufficient.
- **Lack** of process information to assess **improvement in actual timing**.